
89.51%, indicating the model’s remarkable precision
and accuracy in breast cancer anomaly detection and
segmentation. These results hold great promise for
more accurate and efficient breast cancer diagnosis,
with the potential to positively impact clinical prac-
tices and patient outcomes. Our research underscores
the value of deep learning in healthcare and the con-
tinuous pursuit of innovation for saving lives and im-
proving patient care.
REFERENCES
Al-Antari, M. A., Al-Masni, M. A., Choi, M.-T., Han,
S.-M., and Kim, T.-S. (2018). A fully integrated
computer-aided diagnosis system for digital x-ray
mammograms via deep learning detection, segmenta-
tion, and classification. International journal of med-
ical informatics, 117:44–54.
Cokkinides, V., Albano, J., Samuels, A., Ward, M., and
Thum, J. (2005). American cancer society: Cancer
facts and figures. Atlanta: American Cancer Society,
2017.
Dhungel N, Carneiro G, B. A. (2017). A deep learning ap-
proach for the analysis of masses in mammograms
with minimal user intervention. Med Image Anal,
132:114—-128.
Duffy, S. W., Tab
´
ar, L., Yen, A. M.-F., Dean, P. B., Smith,
R. A., Jonsson, H., T
¨
ornberg, S., Chen, S. L.-S., Chiu,
S. Y.-H., Fann, J. C.-Y., et al. (2020). Mammog-
raphy screening reduces rates of advanced and fatal
breast cancers: Results in 549,091 women. Cancer,
126(13):2971–2979.
Geras, K. J., Wolfson, S., Shen, Y., Wu, N., Kim, S., Kim,
E., Heacock, L., Parikh, U., Moy, L., and Cho, K.
(2017). High-resolution breast cancer screening with
multi-view deep convolutional neural networks. arXiv
preprint arXiv:1703.07047.
Ghosh, D. and Ghosh, D. (2022). An overview and study of
cad systems for mass detec-tion and classification and
mammography for the detection of breast cancer. In
Acta Biol. Forum, pages 27–39.
Halling-Brown, M. D., Looney, P., Patel, M., Warren, L.,
Mackenzie, A., and Young, K. (2014). The oncology
medical image database (omi-db). In Medical Imag-
ing 2014: PACS and Imaging Informatics: Next Gen-
eration and Innovations, volume 9039, pages 25–31.
SPIE.
Horsch, K., Giger, M. L., Vyborny, C. J., Lan, L., Mendel-
son, E. B., and Hendrick, R. E. (2006). Classification
of breast lesions with multimodality computer-aided
diagnosis: observer study results on an independent
clinical data set. Radiology, 240(2):357–368.
Liberman, L. and Menell, J. H. (2002). Breast imaging re-
porting and data system (bi-rads). Radiologic Clinics,
40(3):409–430.
Mahdhaoui, H., Mars, A., and Zrigui, M. (2023). Active
learning with aragpt2 for arabic named entity recog-
nition. In International Conference on Computational
Collective Intelligence, pages 226–236. Springer.
Min Dong, Xiangyu Lu, Y. M. Y. G. Y. M. K. W. (2015). An
efficient approach for automated mass segmentation
and classification in mammograms. In Digit Imaging
28, pages 613—-625.
Mustonen, H. (2022). Breast mass segmentation from mam-
mograms with deep transfer learning. Master’s thesis,
H. Mustonen.
Nalawade, Y. V. (2009). Evaluation of breast calcifications.
Indian Journal of radiology and imaging, 19(04):282–
286.
Ribli, D., Horv
´
ath, A., Unger, Z., Pollner, P., and Csabai,
I. (2018). Detecting and classifying lesions in mam-
mograms with deep learning. Scientific reports,
8(1):4165.
Rouhi R, Jafari M, K. S. K. P. (2015). Benign and ma-
lignant breast tumors classification based on region
growing and cnn segmentation. In Expert Syst Appl,
pages 990––1002.
Tang, J., Rangayyan, R. M., Xu, J., El Naqa, I., and Yang,
Y. (2009). Computer-aided detection and diagno-
sis of breast cancer with mammography: recent ad-
vances. IEEE transactions on information technology
in biomedicine, 13(2):236–251.
Vinnicombe, S., Pinto Pereira, S. M., McCormack, V. A.,
Shiel, S., Perry, N., and dos Santos Silva, I. M. (2009).
Full-field digital versus screen-film mammography:
comparison within the uk breast screening program
and systematic review of published data. Radiology,
251(2):347–358.
Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2019). Ob-
ject detection with deep learning: A review. IEEE
transactions on neural networks and learning systems,
30(11):3212–3232.
Zheng, Y., Yang, C., Merkulov, A., and Bandari, M. (2016).
Early breast cancer detection with digital mammo-
grams using haar-like features and adaboost algo-
rithm. In Sensing and Analysis Technologies for
Biomedical and Cognitive Applications 2016, volume
9871, pages 117–126. SPIE.
Zhu, Z., Wang, S.-H., and Zhang, Y.-D. (2023). A survey of
convolutional neural network in breast cancer. Com-
puter modeling in engineering & sciences: CMES,
136(3):2127.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
672