
ACKNOWLEDGMENT
This work was supported by the Indo-Norwegian
Collaboration in Autonomous Cyber-Physical Sys-
tems (INCAPS) project: 287918 of the Interna-
tional Partnerships for Excellent Education, Research
and Innovation (INTPART) program and the Low-
Altitude UAV Communication and Tracking (LU-
CAT) project: 280835 of the IKTPLUSS program
from the Research Council of Norway.
REFERENCES
Adel, M., Moussaoui, A., Rasigni, M., Bourennane, S., and
Hamami, L. (2010). Statistical-based tracking tech-
nique for linear structures detection: Application to
vessel segmentation in medical images. IEEE Signal
Processing Letters, 17(6):555–558.
Beery, S., Wu, G., Rathod, V., Votel, R., and Huang, J.
(2020). Context r-cnn: Long term temporal context
for per-camera object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).
Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020).
Yolov4: Optimal speed and accuracy of object detec-
tion. arXiv preprint arXiv:2004.10934.
Coman, C. et al. (2018). A deep learning sar target clas-
sification experiment on mstar dataset. In 2018 19th
International Radar Symposium (IRS). IEEE.
Fang, P. and Shi, Y. (2018). Small object detection using
context information fusion in faster r-cnn. In 2018
IEEE 4th International Conference on Computer and
Communications (ICCC), pages 1537–1540. IEEE.
Gajjar, V., Gurnani, A., and Khandhediya, Y. (2017). Hu-
man detection and tracking for video surveillance: A
cognitive science approach. In Proceedings of the
IEEE International Conference on Computer Vision
(ICCV) Workshops.
Galvez, R. L., Bandala, A. A., Dadios, E. P., Vicerra, R.
R. P., and Maningo, J. M. Z. (2018a). Object detec-
tion using convolutional neural networks. In TENCON
2018 - 2018 IEEE Region 10 Conference.
Galvez, R. L., Bandala, A. A., Dadios, E. P., Vicerra, R.
R. P., and Maningo, J. M. Z. (2018b). Object detec-
tion using convolutional neural networks. In TENCON
2018-2018 IEEE Region 10 Conference, pages 2023–
2027. IEEE.
Gao, X., Luo, Y., Xing, G., Roy, S., and Liu, H. (2022).
Raw adc data of 77ghz mmwave radar for automotive
object detection.
Karaoguz, H. and Jensfelt, P. (2019). Object detection
approach for robot grasp detection. In 2019 In-
ternational Conference on Robotics and Automation
(ICRA). IEEE.
Li, B., Ouyang, W., Sheng, L., Zeng, X., and Wang, X.
(2019a). Gs3d: An efficient 3d object detection frame-
work for autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition.
Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z.,
Li, Q., Cheng, M., Nie, W., et al. (2022). Yolov6: A
single-stage object detection framework for industrial
applications. arXiv preprint arXiv:2209.02976.
Li, Z., Dong, M., Wen, S., Hu, X., Zhou, P., and Zeng,
Z. (2019b). Clu-cnns: Object detection for medical
images. Neurocomputing, 350.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part I 14,
pages 21–37. Springer.
Lv, W., Xu, S., Zhao, Y., Wang, G., Wei, J., Cui, C.,
Du, Y., Dang, Q., and Liu, Y. (2023). Detrs beat
yolos on real-time object detection. arXiv preprint
arXiv:2304.08069.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Truong, X.-T., Yoong, V. N., and Ngo, T.-D. (2015). Rgb-
d and laser data fusion-based human detection and
tracking for socially aware robot navigation frame-
work. In 2015 IEEE International Conference on
Robotics and Biomimetics (ROBIO), pages 608–613.
IEEE.
Xu, H., Lv, X., Wang, X., Ren, Z., Bodla, N., and Chel-
lappa, R. (2018). Deep regionlets for object detection.
In Proceedings of the European conference on com-
puter vision (ECCV), pages 798–814.
yolov5, u. (2023). ultralytics comprehensive guide. https:
//docs.ultralytics.com/yolov5/. Accessed: 2023-9-1.
yolov8, u. (2023). comprehensive guide ultralytics. https:
//docs.ultralytics.com/. Accessed: 2023-9-1.
Zeng, X., Ouyang, W., and Wang, X. (2013). Multi-stage
contextual deep learning for pedestrian detection. In
Proceedings of the IEEE International Conference on
Computer Vision (ICCV).
Zhang, H., Wang, Y., Dayoub, F., and Sunderhauf, N.
(2021). Varifocalnet: An iou-aware dense object de-
tector. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8514–
8523.
Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., and Ren, D.
(2020). Distance-iou loss: Faster and better learning
for bounding box regression. In Proceedings of the
AAAI conference on artificial intelligence, volume 34.
High Precision Single Shot Object Detection in Automotive Scenarios
611