
REFERENCES
Altmann, P., B
¨
arligea, A., Stein, J., K
¨
olle, M., Gabor, T.,
Phan, T., and Linnhoff-Popien, C. (2023). Challenges
for reinforcement learning in quantum computing.
Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo,
D. P., Margolus, N., Shor, P., Sleator, T., Smolin,
J., and Weinfurter, H. (1995). Elementary gates for
quantum computation. Phys.Rev. A52 (1995) 3457,
52(5):3457–3467.
Bennett, C. H. and Wiesner, S. J. (1992). Communica-
tion via one- and two-particle operators on einstein-
podolsky-rosen states. Phys. Rev. Lett., 69:2881–
2884.
Blazina, D., Duckett, S. B., Halstead, T. K., Kozak, C. M.,
Taylor, R. J. K., Anwar, M. S., Jones, J. A., and
Carteret, H. A. (2005). Generation and interrogation
of a pure nuclear spin state by parahydrogen-enhanced
nmr spectroscopy: a defined initial state for quantum
computation. Magn. Reson. Chem., 43(3):200–208.
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.,
Endo, S., Fujii, K., McClean, J., Mitarai, K., Yuan,
X., Cincio, L., and Coles, P. J. (2021). Variational
quantum algorithms. Nat Rev Phys, 3:625–644.
Ekert, A. K. (1991). Quantum cryptography based on bell’s
theorem. Phys. Rev. Lett., 67(6).
Farhi, E. and Neven, H. (2018). Classification with quan-
tum neural networks on near term processors. arXiv:
Quantum Physics.
F
¨
osel, T., Niu, M. Y., Marquardt, F., and Li, L. (2021).
Quantum circuit optimization with deep reinforce-
ment learning.
Gabor, T., Zorn, M., and C., L.-P. (2022). The applicabil-
ity of reinforcement learning for the automatic gener-
ation of state preparation circuits. GECCO ’22: Pro-
ceedings of the Genetic and Evolutionary Computa-
tion Conference Companion, page 2196–2204.
Jozsa, R. (1994). Fidelity for mixed quantum states. Journal
of Modern Optics, 41(12):2315–2323.
Kaye, P., Laflamme, R., and M., M. (2007). An Introduction
to Quantum Computing. Oxford University Press.
Krenn, M., Kottmann, J. S., Tischler, N., and Aspuru-
Guzik, A. (2021). Conceptual understanding through
efficient automated design of quantum optical experi-
ments. Phys. Rev. X, 11.
Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R., and
Zeilinger, A. (2015). Automated search for new quan-
tum experiments. Phys. Rev. Lett. 116, 090405 (2016),
116(9):090405.
Li, Z., Peng, J., Mei, Y., Lin, S., Wu, Y., Padon, O., and Jia,
Z. (2023). Quarl: A learning-based quantum circuit
optimizer.
Mackeprang, J., Dasari, D. B. R., and Wrachtrup, J.
(2019). A reinforcement learning approach for quan-
tum state engineering. Quantum Machine Intelligence
2, 1(2020), 2(1).
Mansky, M. B., Castillo, S. L., Puigvert, V. R., and
Linnhoff-Popien, C. (2022). Near-optimal circuit con-
struction via cartan decomposition.
Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T. P., Harley, T., Silver, D., and Kavukcuoglu, K.
(2016). Asynchronous methods for deep reinforce-
ment learning. ICML 2016.
Nielsen, M. A. and Chuang, I. L. (2010). Quantum com-
putation and quantum information. 10th anniversary
edition. Cambridge: Cambridge University Press.
Ostaszewski, M., Trenkwalder, L. M., Masarczyk, W.,
Scerri, E., and Dunjko, V. (2021). Reinforcement
learning for optimization of variational quantum cir-
cuit architectures. Advances in Neural Information
Processing Systems (NeurIPS 2021), 34.
Parlett, B. (2000). The qr algorithm. Computing in Science
& Engineering, 2(1):38–42.
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou,
X.-Q., Love, P. J., Aspuru-Guzik, A., and O’Brien,
J. L. (2013). A variational eigenvalue solver on a
quantum processor. Nature Communications, 5:4213,
(2014), 5(1).
Pirhooshyaran, M. and Terlaky, T. (2021). Quantum circuit
design search. Quantum Machine Intelligence, 3(25).
Puterman, M. L. (2014). Markov decision processes: dis-
crete stochastic dynamic programming. John Wiley &
Sons.
Schneider, S., Burgholzer, L., and Wille, R. (2022). A sat
encoding for optimal clifford circuit synthesis. ASP-
DAC ’23: Proceedings of the 28th Asia and South Pa-
cific Design Automation Conference, page 190–195.
Schuld, M., Bocharov, A., Svore, K., and Wiebe, N. (2020).
Circuit-centric quantum classifiers. Phys. Rev. A, 101.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization
algorithms. International Conference on Machine
Learning (ICML).
T
´
oth, G. and Apellaniz, I. (2014). Quantum metrology from
a quantum information science perspective. J. Phys.
A: Math. Theor., 47(42).
Xu, M., Li, Z., Padon, O., Lin, S., Pointing, J., Hirth, A.,
Ma, H., Palsberg, J., Aiken, A., Acar, U. A., and
Jia, Z. (2022). Quartz: Superoptimization of quan-
tum circuits. Association for Computing Machinery,
43:625–640.
Zhang, X.-M., Wei, Z., Asad, R., Yang, X.-C., and Wang,
X. (2019). When does reinforcement learning stand
out in quantum control? a comparative study on state
preparation. npj Quantum Inf, 5(85).
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
94