
tion von teilautomatisierten Pflegeprozessen in der
Langzeitpflege am Beispiel von KI-basiertem Bewe-
gungsmonitoring (etap-projekt.de/) and by the Ger-
man Research Foundation DFG as part of the Collab-
orative Research Center 1320 EASE - Everyday Ac-
tivity Science and Engineering, University of Bremen
(ease-crc.org/).
REFERENCES
Bet, P., Castro, P. C., and Ponti, M. A. (2021). Foresee-
ing future falls with accelerometer features in active
community-dwelling older persons with no recent his-
tory of falls. Experimental Gerontology, 143:111139.
Betteridge, C. M. W., Natarajan, P., Fonseka, R. D., Ho, D.,
Mobbs, R., and Choy, W. J. (2021). Objective falls-
risk prediction using wearable technologies amongst
patients with and without neurogenic gait alterations:
A narrative review of clinical feasibility. mHealth,
7(0).
Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., and Sheikh, Y.
(2021). OpenPose: Realtime Multi-Person 2D Pose
Estimation Using Part Affinity Fields. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
43(1):172–186.
Cha, S.-H. and Srihari, S. N. (2002). On measuring the
distance between histograms. Pattern Recognition,
35(6):1355–1370.
Chawan, V. R., Huber, M., Burns, N., and Daniel, K.
(2022). Person Identification And Tinetti Score Pre-
diction Using Balance Parameters : A Machine Learn-
ing Approach To Determine Fall Risk. In Proceed-
ings of the 15th International Conference on PErva-
sive Technologies Related to Assistive Environments,
pages 203–212, Corfu Greece. ACM.
Choi, J., Parker, S. M., Knarr, B. A., Gwon, Y., and Youn, J.-
H. (2021). Wearable Sensor-Based Prediction Model
of Timed up and Go Test in Older Adults. Sensors,
21(20):6831.
de Queiroz Burle, A., de Gusm
˜
ao Lafayette, T. B., Fonseca,
J. R., Teichrieb, V., and Da Gama, A. E. F. (2020).
Real-time approach for gait analysis using the kinect
v2 sensor for clinical assessment purpose. In 2020
22nd Symposium on Virtual and Augmented Reality
(SVR), pages 144–153. IEEE.
Dubois, A., Bihl, T., and Bresciani, J.-P. (2017). Automat-
ing the Timed Up and Go Test Using a Depth Camera.
Sensors, 18(2):14.
Dubois, A., Bihl, T., and Bresciani, J.-P. (2019). Auto-
matic measurement of fall risk indicators in timed up
and go test. Informatics for Health and Social Care,
44(3):237–245.
Dubois, A., Bihl, T., and Bresciani, J.-P. (2021). Identifying
Fall Risk Predictors by Monitoring Daily Activities
at Home Using a Depth Sensor Coupled to Machine
Learning Algorithms. Sensors, 21(6):1957.
Dubois, A. and Charpillet, F. (2017). Measuring frailty and
detecting falls for elderly home care using depth cam-
era. Journal of Ambient Intelligence and Smart Envi-
ronments, 9(4):469–481.
Eichler, N., Raz, S., Toledano-Shubi, A., Livne, D.,
Shimshoni, I., and Hel-Or, H. (2022). Automatic
and Efficient Fall Risk Assessment Based on Machine
Learning. Sensors (Basel, Switzerland), 22(4):1557.
Fang, H.-S., Li, J., Tang, H., Xu, C., Zhu, H., Xiu, Y., Li,
Y.-L., and Lu, C. (2022). AlphaPose: Whole-Body
Regional Multi-Person Pose Estimation and Tracking
in Real-Time.
Ferraris, C., Cimolin, V., Vismara, L., Votta, V., Amprimo,
G., Cremascoli, R., Galli, M., Nerino, R., Mauro, A.,
and Priano, L. (2021). Monitoring of Gait Parameters
in Post-Stroke Individuals: A Feasibility Study Using
RGB-D Sensors. Sensors, 21(17):5945.
Gill, S., Keimig, S., Kelty-Stephen, D., Hung, Y.-C., and
DeSilva, J. (2016). The relationship between foot
arch measurements and walking parameters in chil-
dren. BMC Pediatrics, 16.
Greene, B. R., Doheny, E. P., O’Halloran, A., and
Anne Kenny, R. (2014). Frailty status can be accu-
rately assessed using inertial sensors and the TUG test.
Age and Ageing, 43(3):406–411.
Greene, B. R., Redmond, S. J., and Caulfield, B. (2017).
Fall Risk Assessment Through Automatic Combina-
tion of Clinical Fall Risk Factors and Body-Worn Sen-
sor Data. IEEE Journal of Biomedical and Health In-
formatics, 21(3):725–731.
Grunnet-Jepsen, A., Sweetser, J. N., and Woodfill, J.
(2020). Tuning depth cameras for best perfor-
mance. https://dev.intelrealsense.com/docs/tuning-
depth-cameras-for-best-performance.
Guralnik, J. (1994). short physical performance battery as-
sessing lower extremity and prediction of mortality
and nursing home admission. J. Gerontrol., 49:85–94.
Hannink, J., Kautz, T., Pasluosta, C. F., Barth, J., Sch
¨
ulein,
S., Gaßmann, K.-G., Klucken, J., and Eskofier, B. M.
(2018). Mobile Stride Length Estimation With Deep
Convolutional Neural Networks. IEEE Journal of
Biomedical and Health Informatics, 22(2):354–362.
Hellmers, S., Izadpanah, B., Dasenbrock, L., Diek-
mann, R., Bauer, J. M., Hein, A., and Fudickar, S.
(2018). Towards an Automated Unsupervised Mo-
bility Assessment for Older People Based on Inertial
TUG Measurements. Sensors (Basel, Switzerland),
18(10):3310.
Hodgins, D. (2008). The importance of measuring human
gait. Medical device technology, 19(5):42, 44–7.
Kroll, F., L
¨
offler, S., Becker, I., and Hofstedt, P. (2022).
Automatic Detection of Timed-up and Go Tests with
IMU Sensor Data:. In Proceedings of the 15th Inter-
national Joint Conference on Biomedical Engineer-
ing Systems and Technologies, pages 15–24, Online
Streaming, — Select a Country —. SCITEPRESS -
Science and Technology Publications.
Lee, L., Jones, A., Hillier, L. M., Costa, A., Patel, T., and
Parikh, R. (2022). Frailty screening in older adults: Is
annual screening necessary in primary care? Family
Practice, 39(1):12–18.
BIOSIGNALS 2024 - 17th International Conference on Bio-inspired Systems and Signal Processing
644