Security Technology. (SECTECH). IEEE. https://doi.
org/10.1109/sectech.2008.33
Tappert, C. C., Suen, C. Y., & Wakahara, T. (1990). The
state of the art in online handwriting recognition. In
IEEE Transactions on Pattern Analysis and Machine
Intelligence (Vol. 12, Issue 8, pp. 787–808). Institute
of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/34.57669
Stremler, S., & Karácsony, Z. (2016). Efficient
Handwritten Digit Recognition Using Normalized
Cross-Correlation. In The publications of the
MultiScience - XXX. MicroCAD International
Scientific Conference. MultiScience. University of
Miskolc. https://doi.org/10.26649/musci.2016.058
Zhang, Y., Li, Z., Yang, Z., Yuan, B., & Liu, X. (2023).
Air-GR: An Over-the-Air Handwritten Character
Recognition System Based on Coordinate Correction
YOLOv5 Algorithm and LGR-CNN. In Sensors (Vol.
23, Issue 3, p. 1464). MDPI AG. https://doi.
org/10.3390/s23031464
Alphabetic Handprint Reading. (1978). In IEEE
Transactions on Systems, Man, and Cybernetics (Vol.
8, Issue 4, pp. 279–282). Institute of Electrical and
Electronics Engineers (IEEE). https://doi.org/10.
1109/tsmc.1978.4309949
Munson, J. H. (1968). Experiments in the recognition of
hand-printed text, part I. In Proceedings of the
December 9-11, 1968, fall joint computer conference,
part II on - AFIPS ’68 (Fall, part II). ACM Press.
https://doi.org/10.1145/1476706.1476735
Highleyman, W. H. (1961). An Analog Method for
Character Recognition. In IEEE Transactions on
Electronic Computers: Vol. EC-10 (Issue 3, pp. 502–
512). Institute of Electrical and Electronics Engineers
(IEEE). https://doi.org/10.1109/tec.1961.5219239
Mori, S., Yamamoto, K., & Yasuda, M. (1984). Research
on Machine Recognition of Handprinted Characters.
In IEEE Transactions on Pattern Analysis and
Machine Intelligence: Vol. PAMI-6 (Issue 4, pp. 386–
405). Institute of Electrical and Electronics Engineers
(IEEE). https://doi.org/10.1109/tpami.1984.4767545
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document
recognition. In Proceedings of the IEEE (Vol. 86,
Issue 11, pp. 2278–2324). Institute of Electrical and
Electronics Engineers (IEEE). https://doi.org/10.
1109/5.726791
Cohen, G., Afshar, S., Tapson, J., & van Schaik, A.
(2017). EMNIST: Extending MNIST to handwritten
letters. In 2017 International Joint Conference on
Neural Networks (IJCNN). IEEE. https://doi.org/10.
1109/ijcnn.2017.7966217
Marti, U.-V., & Bunke, H. (2002). The IAM-database: an
English sentence database for offline handwriting
recognition. In International Journal on Document
Analysis and Recognition (Vol. 5, Issue 1, pp. 39–46).
Springer Science and Business Media LLC.
https://doi.org/10.1007/s100320200071
Hull, J. J. (1994). A database for handwritten text
recognition research. In IEEE Transactions on Pattern
Analysis and Machine Intelligence (Vol. 16, Issue 5,
pp. 550–554). Institute of Electrical and Electronics
Engineers (IEEE). https://doi.org/10.1109/34.291440
Lucas, S. M., Panaretos, A., Sosa, L., Tang, A., Wong, S.,
& Young, R. (n.d.). ICDAR 2003 robust reading
competitions. In Seventh International Conference on
Document Analysis and Recognition, 2003.
Proceedings. Seventh International Conference on
Document Analysis and Recognition. IEEE Comput.
Soc. https://doi.org/10.1109/icdar.2003.1227749
Lucas, S. M. (2005). ICDAR 2005 text locating
competition results. In Eighth International
Conference on Document Analysis and Recognition
(ICDAR’05). IEEE. https://doi.org/10.1109/icdar.
2005.231
Shahab, A., Shafait, F., & Dengel, A. (2011). ICDAR
2011 Robust Reading Competition Challenge 2:
Reading Text in Scene Images. In 2011 International
Conference on Document Analysis and Recognition.
IEEE. https://doi.org/10.1109/icdar.2011.296
Grosicki, E., Carré, M., Brodin, J.-M., & Geoffrois, E.
(2009). Results of the RIMES Evaluation Campaign
for Handwritten Mail Processing. In 2009 10th
International Conference on Document Analysis and
Recognition. IEEE. https://doi.org/10.1109/icdar.
2009.224
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B. &
Ng, A. Y. (2011). Reading Digits in Natural Images
with Unsupervised Feature Learning
Kherallah, M., Tagougui, N., Alimi, A. M., Abed, H. E., &
Margner, V. (2011). Online Arabic Handwriting
Recognition Competition. In 2011 International
Conference on Document Analysis and Recognition.
(ICDAR). IEEE. https://doi.org/10.1109/icdar.
2011.289
Tagougui, N., Kherallah, M., & Alimi, A. M. (2012).
Online Arabic handwriting recognition: a survey. In
International Journal on Document Analysis and
Recognition (IJDAR) (Vol. 16, Issue 3, pp. 209–226).
Springer Science and Business Media LLC.
https://doi.org/10.1007/s10032-012-0186-8
Boubaker, H., Elbaati, A., Tagougui, N., El Abed, H.,
Kherallah, M., & Alimi, A. M. (2012). Online Arabic
Databases and Applications. In Guide to OCR for
Arabic Scripts (pp. 541–557). Springer London.
https://doi.org/10.1007/978-1-4471-4072-6_22
Cheriet, M. (2007). Strategies for visual arabic
handwriting recognition: Issues and case study. In
2007 9th International Symposium on Signal
Processing and Its Applications. (ISSPA). IEEE.
https://doi.org/10.1109/isspa.2007.4555620
Al-Maadeed, S. (2012). Text-Dependent Writer
Identification for Arabic Handwriting. In Journal of
Electrical and Computer Engineering (Vol. 2012, pp.
1–8). Hindawi Limited. https://doi.org/10.1155/
2012/794106
Abdalkafor, A. S. (2018). Survey for Databases On Arabic
Off-line Handwritten Characters Recognition System.
In 2018 1st International Conference on Computer