Alwosheel, A., Van Cranenburgh, S., & Chorus, C. G.
(2018). Is your dataset big enough? Sample size
requirements when using artificial neural networks for
discrete choice analysis. Journal of Choice Modelling,
28, 167–182. https://doi.org/10.1016/j.jocm.2018.07.002
Anders, J. P. V., Smith, C. M., Keller, J. L., Hill, E. C.,
Housh, T. J., Schmidt, R. J., & Johnson, G. O. (2019).
Inter- and Intra-Individual Differences in EMG and
MMG during Maximal, Bilateral, Dynamic Leg
Extensions. Sports, 7(7), 175. https://doi.org/10.3390/
sports7070175
Bakircioğlu, K., & Özkurt, N. (2020). Classification of Emg
Signals Using Convolution Neural Network.
International Journal of Applied Mathematics
Electronics and Computers, 8(4), 115–119.
https://doi.org/10.18100/ijamec.795227
Barton, C. J., Lack, S., Malliaras, P., & Morrissey, D. (2013).
Gluteal muscle activity and patellofemoral pain
syndrome: A systematic review. British Journal of Sports
Medicine, 47(4), 207–214. https://doi.org/10.1136/
bjsports-2012-090953
Benedetti, M. G., Catani, F., Bilotta, T. W., Marcacci, M.,
Mariani, E., & Giannini, S. (2003). Muscle activation
pattern and gait biomechanics after total knee
replacement. Clinical Biomechanics, 18(9), 871–876.
https://doi.org/10.1016/S0268-0033(03)00146-3
Campanini, I., Disselhorst-Klug, C., Rymer, W. Z., &
Merletti, R. (2020). Surface EMG in Clinical Assessment
and Neurorehabilitation: Barriers Limiting Its Use.
Frontiers in Neurology, 11, 934. https://doi.org/
10.3389/fneur.2020.00934
Cano, J., Fácila, L., Gracia-Baena, J. M., Zangróniz, R.,
Alcaraz, R., & Rieta, J. J. (2022). The Relevance of
Calibration in Machine Learning-Based Hypertension
Risk Assessment Combining Photoplethysmography and
Electrocardiography. Biosensors, 12(5), 289.
https://doi.org/10.3390/bios12050289
Castellini, C., Fiorilla, A. E., & Sandini, G. (2009). Multi-
subject/daily-life activity EMG-based control of
mechanical hands. Journal of NeuroEngineering and
Rehabilitation, 6(1), 41. https://doi.org/10.1186/1743-
0003-6-41
Chollet, F. & others. (2015). Keras. https://keras.io
Dagneaux, L., Allal, R., Pithioux, M., Chabrand, P., Ollivier,
M., & Argenson, J.-N. (2018). Femoral malrotation from
diaphyseal fractures results in changes in patellofemoral
alignment and higher patellofemoral stress from a finite
element model study. The Knee, 25(5), 807–813.
https://doi.org/10.1016/j.knee.2018.06.008
Delsys. (n.d.). Trigno Wireless Biofeedback System.
https://www.delsys.com/downloads/USERSGUIDE/trig
no/wireless-biofeedback-system.pdf
El Moumni, M., Voogd, E. H., Ten Duis, H. J., & Wendt, K.
W. (2012). Long-term functional outcome following
intramedullary nailing of femoral shaft fractures. Injury,
43(7), 1154–1158. https://doi.org/10.1016/j.injury.20
12.03.011
Faust, O., Hagiwara, Y., Hong, T. J., Lih, O. S., & Acharya,
U. R. (2018). Deep learning for healthcare applications
based on physiological signals: A review. Computer
Methods and Programs in Biomedicine, 161, 1–13.
https://doi.org/10.1016/j.cmpb.2018.04.005
Garg, N., Balafrej, I., Beilliard, Y., Drouin, D., Alibart, F., &
Rouat, J. (2021). Signals to Spikes for Neuromorphic
Regulated Reservoir Computing and EMG Hand Gesture
Recognition. International Conference on Neuromorphic
Systems 2021, 1–8. https://doi.org/10.1145/3477145.
3477267
Geng, W., Du, Y., Jin, W., Wei, W., Hu, Y., & Li, J. (2016).
Gesture recognition by instantaneous surface EMG
images. Scientific Reports, 6(1), 36571. https://doi.org/
10.1038/srep36571
Guidetti, L., Rivellini, G., & Figura, F. (1996). EMG patterns
during running: Intra- and inter-individual variability.
Journal of Electromyography and Kinesiology, 6(1), 37–
48. https://doi.org/10.1016/1050-6411(95)00015-1
Hamahashi, K., Uchiyama, Y., Kobayashi, Y., Ebihara, G.,
Ukai, T., & Watanabe, M. (2019). Clinical outcomes of
intramedullary nailing of femoral shaft fractures with
third fragments: A retrospective analysis of risk factors
for delayed union. Trauma Surgery & Acute Care Open,
4(1), e000203. https://doi.org/10.1136/tsaco-2018-
000203
Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S.,
Kerkwijk, M. H. van, Brett, M., Haldane, A., Río, J. F.
del, Wiebe, M., Peterson, P., … Oliphant, T. E. (2020).
Array programming with NumPy. Nature, 585(7825),
357–362. https://doi.org/10.1038/s41586-020-2649-2
Hermens, Freriks, Merletti, Rau, Disselhorst-Klug, &
Stegeman. (n.d.). SENIAM (Surface ElectroMyoGraphy
for the Non-Invasive Assessment of Muscles) project.
http://www.seniam.org/
Jaarsma, R. L., Ongkiehong, B. F., Grüneberg, C.,
Verdonschot, N., Duysens, J., & van Kampen, A. (2004).
Compensation for rotational malalignment after
intramedullary nailing for femoral shaft fractures. Injury,
35(12), 1270–1278. https://doi.org/10.1016/j.injury.20
04.01.016
Jaarsma, R. L., & van Kampen, A. (2004). Rotational
malalignment after fractures of the femur. The Journal of
Bone and Joint Surgery. British Volume, 86-B(8), 1100–
1104. https://doi.org/10.1302/0301-620X.86B8.15663
Karnam, N. K., Dubey, S. R., Turlapaty, A. C., & Gokaraju,
B. (2022). EMGHandNet: A hybrid CNN and Bi-LSTM
architecture for hand activity classification using surface
EMG signals. Biocybernetics and Biomedical
Engineering, 42(1), 325–340. https://doi.org/10.1016/
j.bbe.2022.02.005
Lee, S., Sung, M., & Choi, Y. (2020). Wearable fabric sensor
for controlling myoelectric hand prosthesis via
classification of foot postures. Smart Materials and
Structures, 29(3), 035004. https://doi.org/10.1088/1361-
665X/ab6690
Li, G., Li, Y., Yu, L., & Geng, Y. (2011). Conditioning and
Sampling Issues of EMG Signals in Motion Recognition
of Multifunctional Myoelectric Prostheses. Annals of
Biomedical Engineering, 39(6), 1779–1787.
https://doi.org/10.1007/s10439-011-0265-x
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey