
anomaly detection and localization. In Pattern Recog-
nition. ICPR International Workshops and Challenges
2021, Proceedings, Part IV, volume 12664 of Lecture
Notes in Computer Science, pages 475–489. Springer.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In Ghahra-
mani, Z., Welling, M., Cortes, C., Lawrence, N., and
Weinberger, K., editors, Advances in Neural Infor-
mation Processing Systems, volume 27. Curran Asso-
ciates, Inc.
Guo, Y., Jiang, M., Huang, Q., Cheng, Y., and Gong,
J. (2023). Mldfr: A multilevel features restoration
method based on damaged images for anomaly detec-
tion and localization. IEEE Transactions on Industrial
Informatics, pages 1–10.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Resid-
ual Learning for Image Recognition. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Heckler, L., K
¨
onig, R., and Bergmann, P. (2023). Explor-
ing the importance of pretrained feature extractors for
unsupervised anomaly detection and localization. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Work-
shops, pages 2916–2925.
Hendrycks, D., Basart, S., Mazeika, M., Mostajabi, M.,
Steinhardt, J., and Song, D. (2019). A Bench-
mark for Anomaly Segmentation. arXiv preprint
arXiv:1911.11132v1.
Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the
knowledge in a neural network.
Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Komi
´
c, J. (2011). Harmonic mean. In International Ency-
clopedia of Statistical Science, pages 622–624, Berlin,
Heidelberg. Springer Berlin Heidelberg.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
ageNet Classification With Deep Convolutional Neu-
ral Networks. In Advances in Neural Information Pro-
cessing Systems, pages 1097–1105.
Li, C.-L., Sohn, K., Yoon, J., and Pfister, T. (2021). Cut-
paste: Self-supervised learning for anomaly detection
and localization. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 9659–9669.
Li, W.-X., Mahadevan, V., and Vasconcelos, N. (2013).
Anomaly Detection and Localization in Crowded
Scenes. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 36(1):18–32.
Liu, J., Xie, G., Wang, J., Li, S., Wang, C., Zheng, F., and
Jin, Y. (2023a). Deep industrial image anomaly detec-
tion: A survey. arXiv preprint arXiv:2301.11514.
Liu, Z., Zhou, Y., Xu, Y., and Wang, Z. (2023b). Simplenet:
A simple network for image anomaly detection and
localization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 20402–20411.
Luo, W., Li, Y., Urtasun, R., and Zemel, R. (2016). Un-
derstanding the effective receptive field in deep con-
volutional neural networks. In Advances in Neural
Information Processing Systems, volume 29. Curran
Associates, Inc.
Luo, W., Yao, H., and Yu, W. (2023). Normal reference
attention and defective feature perception network for
surface defect detection. IEEE Transactions on Instru-
mentation and Measurement, 72:1–14.
Masci, J., Meier, U., Cires¸an, D., and Schmidhuber, J.
(2011). Stacked Convolutional Auto-Encoders for Hi-
erarchical Feature Extraction. In Artificial Neural Net-
works and Machine Learning – ICANN 2011, pages
52–59. Springer.
Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J.,
Farahani, K., Kirby, J., et al. (2015). The Multi-
modal Brain Tumor Image Segmentation Benchmark
(BRATS). IEEE Transactions on Medical Imaging,
34(10):1993–2024.
Nazare, T. S., de Mello, R. F., and Ponti, M. A. (2018). Are
pre-trained cnns good feature extractors for anomaly
detection in surveillance videos? arXiv preprint
arXiv:1811.08495.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Infor-
mation Processing Systems, volume 32.
P
´
erez, P., Gangnet, M., and Blake, A. (2003). Poisson im-
age editing. ACM Trans. Graph., 22(3):313–318.
Prunella, M., Scardigno, R. M., Buongiorno, D., Brunetti,
A., Longo, N., Carli, R., Dotoli, M., and Bevilacqua,
V. (2023). Deep learning for automatic vision-based
recognition of industrial surface defects: A survey.
IEEE Access, 11:43370–43423.
Reiss, T., Cohen, N., Bergman, L., and Hoshen, Y. (2021).
Panda: Adapting pretrained features for anomaly de-
tection and segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2806–2814.
Rippel, O., Mertens, P., and Merhof, D. (2021). Model-
ing the distribution of normal data in pre-trained deep
features for anomaly detection. In 2020 25th Inter-
national Conference on Pattern Recognition (ICPR).
IEEE.
Roth, K., Pemula, L., Zepeda, J., Sch
¨
olkopf, B., Brox, T.,
and Gehler, P. V. (2022). Towards total recall in in-
dustrial anomaly detection. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR
2022, pages 14298–14308. IEEE.
Rudolph, M., Wehrbein, T., Rosenhahn, B., and Wandt, B.
(2023). Asymmetric student-teacher networks for in-
dustrial anomaly detection. In IEEE/CVF Winter Con-
ference on Applications of Computer Vision, WACV
2023, pages 2591–2601. IEEE.
Schl
¨
uter, H. M., Tan, J., Hou, B., and Kainz, B. (2022). Nat-
ural synthetic anomalies for self-supervised anomaly
detection and localization. In Avidan, S., Brostow,
G., Ciss
´
e, M., Farinella, G. M., and Hassner, T., edi-
tors, Computer Vision – ECCV 2022, pages 474–489,
Cham. Springer Nature Switzerland.
Feature Selection for Unsupervised Anomaly Detection and Localization Using Synthetic Defects
163