REFERENCES
Ahmed, M.I.B.; Alabdulkarem, H.; Alomair, F.; Aldossary,
D.; Alahmari, M.; Alhumaidan, M.; Alrassan, S.;
Rahman, A.; Youldash, M.; Zaman, G. (2023). A Deep-
Learning Approach to Driver Drowsiness Detection.
Safety, 9, 65. https://doi.org/10.3390/safety9030065
Alioua, N., Amine, A., Rziza, M., Aboutajdine, D. (2011).
Driver’s fatigue and drowsiness detection to reduce
traffic accidents on road. In Proceedings of the
International Conference on Computer Analysis of
Images and Patterns, Seville, Spain, 29–31 August
2011.
Alioua, N., Amine, A., Rziza, M. (2014). Driver’s Fatigue
Detection Based on Yawning Extraction. Int. J. Veh.
Technol. https://doi.org/10.1155/2014/678786
Aytekin, A., Mençik, V. (2022). Detection of Driver
Dynamics with VGG16 Model. Appl. Comput. Inform.
27, 83-88. https://doi.org/10.2478/acss-2022-0009
Celecia, A., Figueiredo, K., Vellasco, M., González, R.
(2020). A portable fuzzy driver drowsiness estimation
system. Sensors, 20, 4093. https://doi.org/10.
3390/s20154093
Dlib C++ toolkit. Available online: http://dlib.net/
(accessed on 08 Mai 2022).
Dua, M., Shakshi, Singla, R., et al. (2021). Deep CNN
models-based ensemble approach to driver drowsiness
detection. Neural Comput & Applic. 33, 3155–3168.
https://doi.org/10.1007/s00521-020-05209-7
Hashemi, M., Mirrashid, A., Shirazi, A.B. (2020). Driver
Safety Development: Real-Time Driver Drowsiness
Detection System Based on Convolutional Neural
Network. SN Comput. Sci. 1, 1–10.
Ho, N., Kim, YC. (2021). Evaluation of transfer learning in
deep convolutional neural network models for cardiac
short axis slice classification. Sci Rep. 11, 1839.
https://doi.org/10.1038/s41598-021-81525-9
https://doi.org/10.1007/s42979-020-00306-9
Kamti, M. K.; Iqbal, R. (2022). Evolution of Driver Fatigue
Detection Techniques-A Review From 2007 to 2021.
Transp. Res. Rec., 2676, 485–507.
https://doi.org/10.1177/03611981221096118
Kazemi, V., Sullivan, J. (2014). One millisecond face
alignment with an ensemble of regression trees. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Columbus, OH, USA,
23-28 June 2014. https://doi.org/10.1109/CVPR.
2014.241
Kensert, A., Harrison, P.J., Spjuth, O. (2019). Transfer
Learning with Deep Convolutional Neural Networks
for Classifying Cellular Morphological Changes. SLAS
Discov. 24, 466-475. https://doi.org/10.1177/2472555
218818756
Lee, D. (2021). Which deep learning model can best
explain object representations of within-category
exemplars? J Vis. 1;21(10):12.
https://doi.org/10.1167/jov.21.10.12
Marior, C.B.S., das Chagas Moura, M.J., Santana, J.M.M.,
Lins, I.D. (2020). Real-time classification for
autonomous drowsiness de-tection using eye aspect
ratio. Expert Syst. Appl. 158, 113505.
https://doi.org/10.1016/j.eswa.2020.113505
NHTSA. (2017). “Traffic safety facts 2015.”
Potolea, R., Cacoveanu, S., Lemnaru, C. (2010). Meta-
learning Framework for Prediction Strategy Evaluation.
In Proceedings of the International Conference on
Enterprise Information Systems, Funchal-Madeira,
Portugal, 8–12 June 2010.
Ramzan, M., Khan, H.U., Awan, S.M., Ismail, A., Ilyas, M.,
Mahmood, A. (2019). A Survey on State-of-the-Art
Drowsiness Detection Techniques. IEEE Access. 7.
https://doi.org/61904-61919
ROSPA: The Royal Society for the Prevention of Accidents
(2020), Driver Fatigue and Road Accidents Factsheet.
Shabnam, A., Mona, O., Shervin, S., Behnoosh, H. (2014).
YawDD: A yawning detection dataset. In Proceedings
of the 5th ACM Multimedia Systems Conference,
Singapore, 19 March 2014. https://doi.org/10.
1145/2557642.2563678
Tayab Khan, M., Anwar, H., Ullah, F., Ur Rehman, A.,
Ullah, R., Iqbal, A., Lee, B.H., Kwak, K.S. (2019).
Smart real-time video surveillance platform for
drowsiness detection based on eyelid closure. Wirel.
Commun. Mob. Comput. 1–9. https://doi.org/
10.1155/2019/2036818
Transfer Learning & Fine-Tuning. Available online:
https://keras.io/guides/transfer_learning/ (accessed on
20 August 2021).
Triki, N., Karray, M., Ksantini, M. (2023). A Real-Time
Traffic Sign Recognition Method Using a New
Attention-Based Deep Convolutional Neural Network
for Smart Vehicles. Appl. Sci. 13, 4793.
https://doi.org/10.3390/app13084793
Viola, P., Jones, M. (2011). Rapid object detection using a
boosted cascade of simple features. In Proceedings of
the IEEE Computer Society Conference. Kauai, HI,
USA, 8-14 December 2001.
Wilkinson, VE., Jackson, ML., Westlake, J, Stevens, B,
Barnes, M, Swann, P, Rajaratnam, S.M, Howard ME.
(2013). The accuracy of eyelid movement parameters
for drowsiness detection. J Clin Sleep Med. 15;
9(12):1315-24. https://doi.org/10.5664/jcsm.3278
Xiaoxi, M., Chau, L.P., Yap, K.H. (2017). Depth video-
based two-stream convolutional neural networks for
driver fatigue detection. In Proceedings of the 2017
International Conference on Orange Technologies
(ICOT), Singapore, 8–10 December 2017.
Yu, J., Park, S., Lee, S., Jeon, M. (2018). Driver drowsiness
detection using condition-adaptive representation
learning framework. IEEE Trans. Intell. Transp. Syst.
20,4206–4218. https://doi.org/10.48550/arXiv.1910.
09722
Zandi, A.S., Quddus, A., Prest, L., Comeau, F.J. (2019).
Non-intrusive detection of drowsy driving based on eye
tracking data. Transp. Res. Rec. 2673, 247–257.
https://doi.org/10.1177/0361198119847985 .