
Fu, Z., Feng, P., Angelini, F., Chambers, J., and Naqvi,
S. M. (2018). Particle PHD Filter Based Multiple Hu-
man Tracking Using Online Group-Structured Dictio-
nary Learning. IEEE Access, 6.
Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. (2021).
YOLOX: Exceeding YOLO Series in 2021. arXiv.
Jinlong Yang, Peng Ni, Jiani Miao, and Hongwei Ge (2022).
Improving visual multi-object tracking algorithm via
integrating GM-PHD and correlation filters.
Kim, C., Li, F., Ciptadi, A., and Rehg, J. M. (2015). Multi-
ple Hypothesis Tracking Revisited. In 2015 IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 4696–4704. IEEE.
Leal-Taix
´
e, L., Milan, A., Reid, I., Roth, S., and Schindler,
K. (2015). MOTChallenge 2015: Towards a Bench-
mark for Multi-Target Tracking. arXiv.
Mahler, R. P. S. and Martin, L. (2003). Multitar-
get Bayes Filtering via First-Order Multitarget Mo-
ments. IEEE TRANSACTIONS ON AEROSPACE
AND ELECTRONIC SYSTEMS, 39(4).
Milan, A., Leal-Taixe, L., Reid, I., Roth, S., and Schindler,
K. (2016). MOT16: A Benchmark for Multi-Object
Tracking. arXiv.
Nasseri, M. H., Babaee, M., Moradi, H., and Hosseini, R.
(2022). Fast Online and Relational Tracking. arXiv.
Qin, Z., Zhou, S., Wang, L., Duan, J., Hua, G., and Tang,
W. (2023). MotionTrack: Learning Robust Short-term
and Long-term Motions for Multi-Object Tracking. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 17939–
17948.
Reid, D. B. (1979). An Algorithm for Tracking Multiple
Targets. IEEE Transactions on Automatic Control,
24(6):843–854.
Ren, H., Han, S., Ding, H., Zhang, Z., Wang, H., and
Wang, F. (2023). Focus On Details: Online Multi-
object Tracking with Diverse Fine-grained Represen-
tation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
11289–11298.
Sanchez-Matilla, R., Cavallaro, A., and N, N. (2020). Mo-
tion Prediction for First-Person Vision Multi-object
Tracking. In Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume
12538 LNCS, pages 485–499. Springer Science and
Business Media Deutschland GmbH.
Sanchez-Matilla, R., Poiesi, F., and Cavallaro, A. (2016).
Online multi-target tracking with strong and weak de-
tections. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 9914
LNCS:84–99.
Shao, S., Zhao, Z., Li, B., Xiao, T., Yu, G., Zhang, X., and
Sun, J. (2018). CrowdHuman: A Benchmark for De-
tecting Human in a Crowd. arXiv, pages 1–9.
Song, Y.-M., Yoon, K., Yoon, Y.-C., Yow, K. C., and Jeon,
M. (2019). Online Multi-Object Tracking With GM-
PHD Filter and Occlusion Group Management. IEEE
Access, 7:165103–165121.
Stadler, D. and Beyerer, J. (2022). Modelling Ambiguous
Assignments for Multi-Person Tracking in Crowds.
Proceedings - 2022 IEEE/CVF Winter Conference on
Applications of Computer Vision Workshops, WACVW
2022, pages 133–142.
Stadler, D. and Beyerer, J. (2023). An Improved Asso-
ciation Pipeline for Multi-Person Tracking. In 2023
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 3170–
3179. IEEE.
Sun, P., Cao, J., Jiang, Y., Yuan, Z., Bai, S., Kitani, K., and
Luo, P. (2022). DanceTrack: Multi-Object Tracking
in Uniform Appearance and Diverse Motion.
Sun, P., Cao, J., Jiang, Y., Zhang, R., Xie, E., Yuan, Z.,
Wang, C., and Luo, P. (2020). TransTrack: Multiple
Object Tracking with Transformer. arXiv.
Wang, Y., Kitani, K., and Weng, X. (2020). Joint Object De-
tection and Multi-Object Tracking with Graph Neural
Networks. arXiv.
Wojke, N., Bewley, A., and Paulus, D. (2018). Simple on-
line and realtime tracking with a deep association met-
ric. Proceedings - International Conference on Image
Processing, ICIP, 2017-Septe:3645–3649.
Wojke, N. and Paulus, D. (2017). Confidence-Aware prob-
ability hypothesis density filter for visual multi-object
tracking. VISIGRAPP 2017 - Proceedings of the 12th
International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Appli-
cations, 6(Visigrapp):132–139.
Yan, B., Jiang, Y., Sun, P., Wang, D., Yuan, Z., Luo, P., and
Lu, H. (2022). Towards Grand Unification of Object
Tracking. arXiv.
Yang, F., Chang, X., Sakti, S., Wu, Y., and Nakamura, S.
(2021). ReMOT: A model-agnostic refinement for
multiple object tracking. Image and Vision Comput-
ing, 106:104091.
Yang, F., Odashima, S., Masui, S., and Jiang Fujitsu Re-
search, S. (2023). Hard To Track Objects With Irregu-
lar Motions and Similar Appearances? Make It Easier
by Buffering the Matching Space. In Proceedings of
the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV),, pages 4799–4808.
Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., and
Wei, Y. (2021). MOTR: End-to-End Multiple-Object
Tracking with Transformer. arXiv.
Zhang, S., Benenson, R., and Schiele, B. (2017). CityPer-
sons: A diverse dataset for pedestrian detection. Pro-
ceedings - 30th IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2017, 2017-
Janua:4457–4465.
Zhang, Y., Sun, P., Jiang, Y., Yu, D., Yuan, Z., Luo, P., Liu,
W., and Wang, X. (2021). ByteTrack: Multi-Object
Tracking by Associating Every Detection Box. ECCV
2022, Proceedings.
Zhang, Y., Wang, T., and Zhang, X. (2023). MOTRv2:
Bootstrapping End-to-End Multi-Object Tracking by
Pretrained Object Detectors. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 22056–22065.
Zhu, T., Hiller, M., Ehsanpour, M., Ma, R., Drummond, T.,
Reid, I., and Rezatofighi, H. (2021). Looking Beyond
Two Frames: End-to-End Multi-Object Tracking Us-
ing Spatial and Temporal Transformers. arXiv, pages
1–20.
BASE: Probably a Better Approach to Visual Multi-Object Tracking
121