through the Moving Average Convergence Divergence
(MACD) indicator. Investment Management and
Financial Innovations, 17(4), p.44.
Aha, D.W., Kibler, D. and Albert, M.K. (1991). Instance-
based learning algorithms. Machine learning, 6, pp.37-
66.
Breiman, L. (1996). Bagging predictors. Machine learning,
24, pp.123-140.
Cessie, S.L. and Houwelingen, J.V. (1992). Ridge
estimators in logistic regression. Journal of the Royal
Statistical Society Series C: Applied Statistics, 41(1),
pp.191-201.
Chollet, F. and others. (2015). Keras. Avable at:
https://github.com/fchollet/keras. / (Accessed: 25
October 2023).
Engle, R.F., Ghysels, E. and Sohn, B. (2013). Stock market
volatility and macroeconomic fundamentals. Review of
Economics and Statistics, 95(3), pp.776-797.
Gumparthi, S. (2017. Relative strength index for
developing effective trading strategies in constructing
optimal portfolio. International Journal of Applied
Engineering Research, 12(19), pp.8926-8936.
Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep
learning. MIT press.
Dukascopy Bank Sa. (2023). Historical data feed, Swiss
Forex Bank-ECN broker. Swiss FX Trading Platform
Dukascopy Bank SA. Available at:
https://www.dukascopy.com/swiss/english/marketwatc
h/historical/ (Accessed: 25 October 2023).
Hoque, K.E. and Aljamaan, H. (2021). Impact of
hyperparameter tuning on machine learning models in
stock price forecasting. IEEE Access, 9, pp.163815-
163830.
Keerthi, S.S., Shevade, S.K., Bhattacharyya, C. and
Murthy, K.R.K. (2001). Improvements to Platt's SMO
algorithm for SVM classifier design. Neural
computation, 13(3), pp.637-649.
Islam, M.S. and Hossain, E. (2021). Foreign exchange
currency rate prediction using a GRU-LSTM hybrid
network. Soft Computing Letters, 3, p.100009.
Long, W., Lu, Z. and Cui, L. (2019). Deep learning-based
feature engineering for stock price movement
prediction. Knowledge-Based Systems, 164, pp.163-
173.
MacKenzie, D. (2019). How Fragile Is Competition in
High-Frequency Trading. Tabbforum, March, 26.
Maqsood, H., Mehmood, I., Maqsood, M., Yasir, M., Afzal,
S., Aadil, F., Selim, M.M. and Muhammad, K. (2020).
A local and global event sentiment based efficient stock
exchange forecasting using deep learning. International
Journal of Information Management, 50, pp.432-451.
Milke, V., Luca, C., Wilson, G. and Fatima, A. (2020).
Using Convolutional Neural Networks and Raw Data to
Model Intraday Trading Market Behaviour. In ICAART
(2) (pp. 224-231).
Nauta, M., Trienes, J., Pathak, S., Nguyen, E., Peters, M.,
Schmitt, Y., Schlötterer, J., van Keulen, M. and Seifert,
C. (2023). From anecdotal evidence to quantitative
evaluation methods: A systematic review on evaluating
explainable ai. ACM Computing Surveys, 55(13s), pp.1-
42.
Pande, K.S.Y., Divayana, D.G.H. and Indrawan, G. (2021).
March. Comparative analysis of naïve bayes and knn on
prediction of forex price movements for gbp/usd
currency at time frame daily. In Journal of Physics:
Conference Series (Vol. 1810, No. 1, p. 012012). IOP
Publishing.
Pedregosa, F. et al. (2011). Scikit-learn: Machine learning
in Python. Journal of machine learning research,
12(Oct), pp.2825–2830.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V. and Vanderplas, J. (2011).
Scikit-learn: Machine learning in Python. The Journal
of machine Learning research, 12, pp.2825-2830.
Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K. and
Müller, K.R. eds. (2019). Explainable AI: interpreting,
explaining and visualizing deep learning (Vol. 11700).
Springer Nature.
Schierholt, K. and Dagli, C.H. (1996). March. Stock market
prediction using different neural network classification
architectures. In IEEE/IAFE 1996 Conference on
Computational Intelligence for Financial Engineering
(CIFEr) (pp. 72-78). IEEE.
Vignesh, C.K. (2018). Applying machine learning models
in stock market prediction. IRJET, Journal.
Waskom, M. et al. (2017). Mwaskom/seaborn: v0.8.1
(September 2017), Zenodo. Available at:
https://doi.org/10.5281/zenodo.883859.
Zhanggui, Z., Yau, H. and Fu, A.M. (1999). July. A new
stock price prediction method based on pattern
classification. In IJCNN'99. International Joint
Conference on Neural Networks. Proceedings (Cat. No.
99CH36339) (Vol. 6, pp. 3866-3870). IEEE.
Analysis of Intraday Financial Market Using ML and Neural Networks for GBP/USD Currency Pair Price Forecasting