
ACKNOWLEDGEMENTS
This work has been partially supported by the Span-
ish project PID2022-136436NB-I00 (AEI-MICINN),
Horizon EU project MUSAE (No. 01070421),
2021-SGR-01094 (AGAUR), Icrea Academia’2022
(Generalitat de Catalunya), Robo STEAM (2022-
1-BG01-KA220-VET-000089434, Erasmus+ EU),
DeepSense (ACE053/22/000029, ACCI
´
O), Deep-
FoodVol (AEI-MICINN, PDC2022-133642-I00),
PID2022-141566NB-I00 (AEI-MICINN), CERCA
Programme / Generalitat de Catalunya, and Agencia
Nacional de Investigaci
´
on y Desarrollo de Chile
(ANID) (Grant No. FONDECYT INICIACI
´
ON
11230262). D. Ponte acknowledges the support
of Secretar
´
ıa Nacional de Ciencia, Tecnolog
´
ıa
e Innovaci
´
on Senacyt Panam
´
a (Scholarship No.
270-2022-125).
REFERENCES
Aguilar, E., Bola
˜
nos, M., and Radeva, P. (2019). Regular-
ized uncertainty-based multi-task learning model for
food analysis. Journal of Visual Communication and
Image Representation, 60:360–370.
Allegra, D., Battiato, S., Ortis, A., Urso, S., and Polosa,
R. (2020). A review on food recognition technology
for health applications. Health Psychology Research,
8(3).
Allrecipes, I. (2023). Allrecipes.
Deldjoo, Y., Schedl, M., Cremonesi, P., and Pasi, G. (2020).
Recommender systems leveraging multimedia con-
tent. ACM Computing Surveys (CSUR), 53(5):1–38.
Divakar, H., Ramesh, D., and Prakash, B. (2019). An on-
tology driven system to predict diabetes with machine
learning techniques. International Journal of Innova-
tive Technology and Exploring Engineering (IJITEE),
9:4005–4011.
Donadello, I. and Dragoni, M. (2019). Ontology-driven
food category classification in images. In ICIAP,
pages 607–617. Springer.
Dragoni, M., Bailoni, T., Maimone, R., and Eccher, C.
(2018). Helis: An ontology for supporting healthy
lifestyles. In The Semantic Web–ISWC 2018: 17th In-
ternational Semantic Web Conference, Monterey, CA,
USA, October 8–12, 2018, Proceedings, Part II 17,
pages 53–69. Springer.
G
¨
uting, R. H. (1994). Graphdb: Modeling and querying
graphs in databases. In VLDB, volume 94, pages 12–
15. Citeseer.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In CVPR, pages
770–778.
Jiang, S., Min, W., Liu, L., and Luo, Z. (2019). Multi-
scale multi-view deep feature aggregation for food
recognition. IEEE Transactions on Image Processing,
29:265–276.
Kuang, Z., Yu, J., Li, Z., Zhang, B., and Fan, J. (2018). In-
tegrating multi-level deep learning and concept ontol-
ogy for large-scale visual recognition. Pattern Recog-
nition, 78:198–214.
Ławrynowicz, A., Wr
´
oblewska, A., Adrian, W. T., Kul-
czy
´
nski, B., and Gramza-Michałowska, A. (2022).
Food recipe ingredient substitution ontology design
pattern. Sensors, 22(3):1095.
Ming, Z.-Y., Chen, J., Cao, Y., Forde, C., Ngo, C.-W., and
Chua, T. S. (2018). Food photo recognition for di-
etary tracking: System and experiment. In MultiMe-
dia Modeling: 24th International Conference, MMM
2018, Bangkok, Thailand, February 5-7, 2018, Pro-
ceedings, Part II 24, pages 129–141. Springer.
Misra, I., Shrivastava, A., Gupta, A., and Hebert, M.
(2016). Cross-stitch networks for multi-task learning.
In CVPR, pages 3994–4003.
Popovski, G., Kochev, S., Korousic-Seljak, B., and Efti-
mov, T. (2019). Foodie: A rule-based named-entity
recognition method for food information extraction.
In ICPRAM, pages 915–922. SCITEPRESS.
Popovski, G., Seljak, B. K., and Eftimov, T. (2020). A sur-
vey of named-entity recognition methods for food in-
formation extraction. IEEE Access, 8:31586–31594.
Song, Y., Yang, X., and Xu, C. (2023). Self-supervised
calorie-aware heterogeneous graph networks for food
recommendation. ACM Transactions on Multime-
dia Computing, Communications and Applications,
19(1s):1–23.
Stojanov, R., Kocev, I., Gramatikov, S., Popovski, G., Sel-
jak, B. K., and Eftimov, T. (2020). Toward robust food
ontology mapping. In 2020 IEEE International Con-
ference on Big Data (Big Data), pages 3596–3601.
IEEE.
Wang, Z., Min, W., Li, Z., Kang, L., Wei, X., Wei, X.,
and Jiang, S. (2022). Ingredient-guided region dis-
covery and relationship modeling for food category-
ingredient prediction. IEEE Transactions on Image
Processing, 31:5214–5226.
Yummly, I. (2023). Yummly.
Zhang, Y., Qu, Y., Li, C., Lei, Y., and Fan, J. (2019).
Ontology-driven hierarchical sparse coding for large-
scale image classification. Neurocomputing, 360:209–
219.
Zhao, H., Yap, K.-H., and Kot, A. C. (2021). Fusion learn-
ing using semantics and graph convolutional network
for visual food recognition. In WACV, pages 1711–
1720.
Ontology-Driven Deep Learning Model for Multitask Visual Food Analysis
631