Cichocki, A., Phan, A.-H., Zhao, Q., Lee, N., Oseledets,
I., Sugiyama, M., and Mandic, D. P. (2017). Tensor
networks for dimensionality reduction and large-scale
optimization: Part 2 applications and future perspec-
tives. Foundations and Trends® in Machine Learning,
9(6):431–673.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3):273–297.
Deif, M. A., Attar, H., Amer, A., Elhaty, I. A., Khosravi,
M. R., Solyman, A. A., et al. (2022). Diagnosis of oral
squamous cell carcinoma using deep neural networks
and binary particle swarm optimization on histopatho-
logical images: an aiomt approach. Computational
Intelligence and Neuroscience, 2022.
Ferro, A., Kotecha, S., and Fan, K. (2022). Machine learn-
ing in point-of-care automated classification of oral
potentially malignant and malignant disorders: a sys-
tematic review and meta-analysis. Scientific Reports,
12(1):13797.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep resid-
ual learning for image recognition.
Khan, A. M., Rajpoot, N., Treanor, D., and Magee, D.
(2014). A nonlinear mapping approach to stain
normalization in digital histopathology images using
image-specific color deconvolution. IEEE Transac-
tions on Biomedical Engineering, 61(6):1729 – 1738.
Cited by: 391; All Open Access, Bronze Open Ac-
cess.
Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., and Shin,
D. (2016). Compression of deep convolutional neural
networks for fast and low power mobile applications.
Kolda, T. G. and Bader, B. W. (2009). Tensor decomposi-
tions and applications. SIAM Review, 51(3):455–500.
Kumar, V., Abbas, A., Fausto, N., and Aster, J. (2009). Rob-
bins & Cotran Pathologic Basis of Disease E-Book.
Robbins Pathology. Elsevier Health Sciences.
Liu, Y. and Ng, M. K. (2022). Deep neural network com-
pression by tucker decomposition with nonlinear re-
sponse. Knowledge-Based Systems, 241:108171.
Lumerman, H., Freedman, P., and Kerpel, S. (1995). Oral
epithelial dysplasia and the development of inva-
sive squamous cell carcinoma. Oral Surgery, Oral
Medicine, Oral Pathology, Oral Radiology, and En-
dodontology, 79(3):321–329.
Martinez, E. Z., Neto, F. L., and de Braganc¸a Pereira, B.
(2003). A curva roc para testes diagn
´
osticos.
Mitchell, T. M. (1997). Machine learning.
Neves, L. A., Martinez, J. M. C., Longo, L. H. d. C.,
Roberto, G. F., Tosta, T. A. A., Faria, P. R. d., Loy-
ola, A. M., Cardoso, S. V., Silva, A. B., Nascimento,
M. Z. d., et al. (2023). Classification of h&e images
via cnn models with xai approaches, deepdream rep-
resentations and multiple classifiers. In Proceedings.
Quinlan, J. R. (1986). Induction of decision trees. Machine
Learning, 1(1):81–106.
Ribeiro, M. G., Neves, L. A., Roberto, G. F., Tosta, T. A.,
Martins, A. S., and Do Nascimento, M. Z. (2018).
Analysis of the influence of color normalization in the
classification of non-hodgkin lymphoma images. In
2018 31st SIBGRAPI Conference on Graphics, Pat-
terns and Images (SIBGRAPI), pages 369–376. IEEE.
Sarwinda, D., Paradisa, R. H., Bustamam, A., and Anggia,
P. (2021). Deep learning in image classification using
residual network (resnet) variants for detection of col-
orectal cancer. Procedia Computer Science, 179:423–
431. 5th International Conference on Computer Sci-
ence and Computational Intelligence 2020.
Sethi, A., Sha, L., Vahadane, A. R., Deaton, R. J., Ku-
mar, N., Macias, V., and Gann, P. H. (2016). Em-
pirical comparison of color normalization methods
for epithelial-stromal classification in h and e images.
Journal of Pathology Informatics, 7(1):17.
Sha, L., Schonfeld, D., and Sethi, A. (2017). Color nor-
malization of histology slides using graph regularized
sparse NMF. In Gurcan, M. N. and Tomaszewski,
J. E., editors, Society of Photo-Optical Instrumen-
tation Engineers (SPIE) Conference Series, volume
10140 of Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, page 1014010.
Sidiropoulos, N. D., De Lathauwer, L., Fu, X., Huang, K.,
Papalexakis, E. E., and Faloutsos, C. (2017). Ten-
sor decomposition for signal processing and machine
learning. IEEE Transactions on Signal Processing,
65(13):3551–3582.
Silva, A. B., De Oliveira, C. I., Pereira, D. C., Tosta,
T. A., Martins, A. S., Loyola, A. M., Cardoso, S. V.,
De Faria, P. R., Neves, L. A., and Do Nascimento,
M. Z. (2022). Assessment of the association of deep
features with a polynomial algorithm for automated
oral epithelial dysplasia grading. In 2022 35th SIB-
GRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI), volume 1, pages 264–269. IEEE.
Talo, M. (2019). Convolutional neural networks for multi-
class histopathology image classification. ArXiv,
abs/1903.10035.
Tosta, T. A. A., de Faria, P. R., Neves, L. A., and do Nasci-
mento, M. Z. (2019a). Computational normalization
of h&e-stained histological images: Progress, chal-
lenges and future potential. Artificial intelligence in
medicine, 95:118–132.
Tosta, T. A. A., de Faria, P. R., Servato, J. P. S., Neves,
L. A., Roberto, G. F., Martins, A. S., and do Nasci-
mento, M. Z. (2019b). Unsupervised method for nor-
malization of hematoxylin-eosin stain in histological
images. Comput Med Imaging Graph, 77:101646.
Vahadane, A., Peng, T., Albarqouni, S., Baust, M., Steiger,
K., Schlitter, A. M., Sethi, A., Esposito, I., and Navab,
N. (2015). Structure-preserved color normalization
for histological images. In 2015 IEEE 12th Inter-
national Symposium on Biomedical Imaging (ISBI),
pages 1012–1015.
Wild, C., Stewart, B., Weiderpass, E., for Research on Can-
cer, I. A., and Weltgesundheitsorganisation (2020).
World Cancer Report: Cancer Research for Cancer
Prevention. International Agency for Research on
Cancer.
Wright, M. N., Ziegler, A., and K
¨
onig, I. R. (2016). Do little
interactions get lost in dark random forests? BMC
bioinformatics, 17(1):145.
Investigation of Deep Neural Network Compression Based on Tucker Decomposition for the Classification of Lesions in Cavity Oral
523