
Ivanovici, M., Richard, N., and Decean, H. (2009). Fractal
dimension and lacunarity of psoriatic lesions-a colour
approach. medicine, 6(4):7.
Kassani, S. H., Kassani, P. H., Wesolowski, M. J., Schnei-
der, K. A., and Deters, R. (2019). Classification of
histopathological biopsy images using ensemble of
deep learning networks. In Proceedings of the 29th
Annual International Conference on Computer Sci-
ence and Software Engineering, pages 92–99.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Lumerman, H., Freedman, P., and Kerpel, S. (1995). Oral
epithelial dysplasia and the development of inva-
sive squamous cell carcinoma. Oral Surgery, Oral
Medicine, Oral Pathology, Oral Radiology, and En-
dodontology, 79(3):321–329.
Lumini, A. and Nanni, L. (2018). Convolutional neural net-
works for atc classification. Current pharmaceutical
design, 24(34):4007–4012.
Martins, A. S., Neves, L. A., de Faria, P. R., Tosta, T. A.,
Longo, L. C., Silva, A. B., Roberto, G. F., and
do Nascimento, M. Z. (2021). A hermite polynomial
algorithm for detection of lesions in lymphoma im-
ages. Pattern Analysis and Applications, 24:523–535.
Morrison, P. (1975). Les objets fractals: Forme, hasard et
dimension.
M
¨
uller, S. (2018). Oral epithelial dysplasia, atypical verru-
cous lesions and oral potentially malignant disorders:
focus on histopathology. Oral surgery, oral medicine,
oral pathology and oral radiology, 125(6):591–602.
Pires, F. R., Ramos, A. B., Oliveira, J. B. C. d., Tavares,
A. S., Luz, P. S. R. d., and Santos, T. C. R. B. d.
(2013). Oral squamous cell carcinoma: clinicopatho-
logical features from 346 cases from a single oral
pathology service during an 8-year period. Journal
of Applied Oral Science, 21:460–467.
Ribeiro, M. G., Neves, L. A., do Nascimento, M. Z.,
Roberto, G. F., Martins, A. S., and Tosta, T. A. A.
(2019). Classification of colorectal cancer based on
the association of multidimensional and multireso-
lution features. Expert Systems with Applications,
120:262–278.
Ribeiro, M. G., Neves, L. A., Roberto, G. F., Tosta, T. A.,
Martins, A. S., and Do Nascimento, M. Z. (2018).
Analysis of the influence of color normalization in the
classification of non-hodgkin lymphoma images. In
2018 31st SIBGRAPI Conference on Graphics, Pat-
terns and Images (SIBGRAPI), pages 369–376. IEEE.
Roberto, G. F. et al. (2021a). Associac¸
˜
ao entre atributos
manuais e aprendizado profundo baseada em geome-
tria fractal para classificac¸
˜
ao de imagens histol
´
ogicas.
Roberto, G. F., Lumini, A., Neves, L. A., and do Nasci-
mento, M. Z. (2021b). Fractal neural network: A new
ensemble of fractal geometry and convolutional neu-
ral networks for the classification of histology images.
Expert Systems with Applications, 166:114103.
Roberto, G. F., Neves, L. A., Nascimento, M. Z., Tosta,
T. A., Longo, L. C., Martins, A. S., and Faria, P. R.
(2017). Features based on the percolation theory for
quantification of non-hodgkin lymphomas. Comput-
ers in biology and medicine, 91:135–147.
Sagheer, S. H., Whitaker-Menezes, D., Han, J. Y., Curry,
J. M., Martinez-Outschoorn, U., and Philp, N. J.
(2021). Chapter 6 - 4nqo induced carcinogenesis:
A mouse model for oral squamous cell carcinoma.
In Galluzzi, L. and Buqu
´
e, A., editors, Carcinogen-
driven mouse models of oncogenesis, volume 163 of
Methods in Cell Biology, pages 93–111. Academic
Press.
Silva, A. B., De Oliveira, C. I., Pereira, D. C., Tosta,
T. A., Martins, A. S., Loyola, A. M., Cardoso, S. V.,
De Faria, P. R., Neves, L. A., and Do Nascimento,
M. Z. (2022a). Assessment of the association of deep
features with a polynomial algorithm for automated
oral epithelial dysplasia grading. In 2022 35th SIB-
GRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI), volume 1, pages 264–269. IEEE.
Silva, A. B., Martins, A. S., Tosta, T. A. A., Neves, L. A.,
Servato, J. P. S., de Ara
´
ujo, M. S., de Faria, P. R.,
and do Nascimento, M. Z. (2022b). Computational
analysis of histological images from hematoxylin and
eosin-stained oral epithelial dysplasia tissue sections.
Expert Systems with Applications, 193:116456.
Smith, J., Rattay, T., McConkey, C., Helliwell, T., and
Mehanna, H. (2009). Biomarkers in dysplasia of
the oral cavity: a systematic review. Oral oncology,
45(8):647–653.
Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model
scaling for convolutional neural networks. In Interna-
tional conference on machine learning, pages 6105–
6114. PMLR.
Tolle, C. R., McJunkin, T. R., and Gorsich, D. J. (2008).
An efficient implementation of the gliding box lacu-
narity algorithm. Physica D: Nonlinear Phenomena,
237(3):306–315.
Tosta, T. A. A., Freitas, A. D., de Faria, P. R., Neves,
L. A., Martins, A. S., and do Nascimento, M. Z.
(2023). A stain color normalization with robust dic-
tionary learning for breast cancer histological images
processing. Biomedical Signal Processing and Con-
trol, 85:104978.
Warnakulasuriya, S., Reibel, J., Bouquot, J., and Dabel-
steen, E. (2008). Oral epithelial dysplasia classifica-
tion systems: predictive value, utility, weaknesses and
scope for improvement. Journal of Oral Pathology &
Medicine, 37(3):127–133.
Zhou, Z.-H. (2012). Ensemble methods: foundations and
algorithms. CRC press.
Oral Dysplasia Classification by Using Fractal Representation Images and Convolutional Neural Networks
531