ACKNOWLEDGEMENTS
This work was partially supported by Army Research
Office Grant No. W911NF-20-1-0213.
REFERENCES
Beltagy, I., Peters, M. E., and Cohan, A. (2020). Long-
former: The long-document transformer. arXiv
preprint arXiv:2004.05150.
Cer, D., Yang, Y., Kong, S.-Y., Hua, N., Limtiaco, N.,
St. John, R., Constant, N., Guajardo-Cespedes, M.,
Yuan, S., Tar, C., Strope, B., and Kurzweil, R. (2018).
Universal sentence encoder for English. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 169–174, Brussels, Belgium. Association
for Computational Linguistics.
Choudhary, R., Alsayed, O., Doboli, S., and Minai, A.
(2022). Building semantic cognitive maps with text
embedding and clustering. In 2022 International Joint
Conference on Neural Networks (IJCNN), pages 01–
08. IEEE.
Choudhary, R., Doboli, S., and Minai, A. A. (2021). A
comparative study of methods for visualizable se-
mantic embedding of small text corpora. In 2021
International Joint Conference on Neural Networks
(IJCNN’21), pages 1–8. IEEE.
Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and
Bordes, A. (2017). Supervised learning of universal
sentence representations from natural language infer-
ence data. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 670–680, Copenhagen, Denmark. Association
for Computational Linguistics.
Coursey, L., Gertner, R., Williams, B., Kenworthy, J.,
Paulus, P., and Doboli, S. (2019). Linking the di-
vergent and convergent processes of collaborative cre-
ativity: The impact of expertise levels and elaboration
processes. Frontiers in Psychology, 10:699.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.
Fisher, D., Choudhary, R., Alsayed, O., Doboli, S., and Mi-
nai, A. (2022). A real-time semantic model for rele-
vance and novelty detection from group messages. In
2022 International Joint Conference on Neural Net-
works (IJCNN), pages 01–08. IEEE.
Jones, K. S. (1972). A statistical interpretation of term
specificity and its application in retrieval. Journal of
Documentation, 28:11–21.
Kuan, J. and Mueller, J. (2022). Back to the basics: Revis-
iting out-of-distribution detection baselines. In 2022
ICML Workshop on Principles of Distribution Shift.
Lample, G. and Conneau, A. (2019). Cross-lingual
language model pretraining. arXiv preprint
arXiv:1901.07291.
Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In Xing, E. P. and Je-
bara, T., editors, Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Pro-
ceedings of Machine Learning Research, pages 1188–
1196, Bejing, China. PMLR.
Lilleberg, J. (2020). United states presidential
speeches. https://www.kaggle.com/datasets/littleotter/
united-states-presidential-speeches. Accessed:2023.
Lo, K., Jin, Y., Tan, W., Liu, M., Du, L., and Buntine,
W. (2021). Transformer over pre-trained transformer
for neural text segmentation with enhanced topic co-
herence. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 3334–
3340, Punta Cana, Dominican Republic. Association
for Computational Linguistics.
Luhn, H. P. (1957). A statistical approach to mechanized
encoding and searching of literary information. IBM
Journal 1(4), pages 309–317.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vec-
tor space. In Bengio, Y. and LeCun, Y., editors,
1st International Conference on Learning Represen-
tations, ICLR 2013, Scottsdale, Arizona, USA, Work-
shop Track Proceedings.
OpenAI (2023a). ChatGPT: Optimizing language models
for dialogue.
OpenAI (2023b). GPT-4 technical report.
Pang, B., Nijkamp, E., Kry
´
sci
´
nski, W., Savarese, S., Zhou,
Y., and Xiong, C. (2022). Long document summariza-
tion with top-down and bottom-up inference. arXiv
preprint arXiv:2203.07586.
Pennington, J., Socher, R., and Manning, C. (2014). GloVe:
Global vectors for word representation. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.
Reimers, N. and Gurevych, I. (2019). Sentence-BERT:
Sentence embeddings using siamese BERT-networks.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing, page
3982–3992.
Song, K., Tan, X., Qin, T., Lu, J., and Liu, T.-Y. (2020). MP-
net: Masked and permuted pre-training for language
understanding. Advances in Neural Information Pro-
cessing Systems, 33:16857–16867.
Tatman, R. (2017). Google web trillion word corpus. https:
//www.kaggle.com/rtatman/english-word-frequency.
Accessed:2021.
Tolman, E. C. (1948). Cognitive maps in rats and men. Psy-
chological Review, 55:189–208.
Inferring Interpretable Semantic Cognitive Maps from Noisy Document Corpora
749