REFERENCES
Barricelli, B. R., Casiraghi, E., and Fogli, D. (2019). A
survey on digital twin: Definitions, characteristics,
applications, and design implications. IEEE Access,
7:167653–167671.
Bastien, R., Douady, S., and Moulia, B. (2015). A uni-
fied model of shoot tropism in plants: Photo-, gravi-
and propio-ception. PLoS computational biology,
11:e1004037.
Chattoraj, J., Yang, F., Lim, C. W., Gobeawan, L., Liu,
X., and Raghavan, V. S. (2022). Knowledge-driven
transfer learning for tree species recognition. In 2022
17th International Conference on Control, Automa-
tion, Robotics and Vision (ICARCV), pages 149–154.
Gobeawan, L., Chattoraj, J., Yang, F., Lim, C. W., Liu,
X., and Raghavan, V. S. G. (2023). Knowledge-
based learning for plant phenotyping. In Chen, T.-W.,
Kahlen, A. F. K., and St
¨
utzel, H., editors, 10th Inter-
national Conference on Functional-Structural Plant
Models (FSPM2023), pages 140–141.
Gobeawan, L., Lin, E. S., Tandon, A., Yee, A. T. K., Khoo,
V. H. S., Teo, S. N., Su, Y., Lim, C. W., Wong, S. T.,
Wise, D. J., Cheng, P., Liew, S. C., Huang, X., Li,
Q. H., Teo, L. S., Fekete, G. S., and Poto, M. T.
(2018). Modeling trees for Virtual Singapore: From
data acquisition to CityGML models. International
Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XLII-4/W10:55–62.
Gobeawan, L., Wise, D. J., Wong, S. T., Yee, A. T. K.,
Lim, C. W., and Su, Y. (2021). Tree species modelling
for digital twin cities. Transactions on Computational
Science XXXVIII, pages 17–35.
Godin, C. and Sinoquet, H. (2005). Functional–structural
plant modelling. New Phytologist, 166(3):705–708.
Government, N. S. W. (2019). Nsw spatial digital twin.
Hartley, R. J. L., Jayathunga, S., Massam, P. D., De Silva,
D., Estarija, H. J., Davidson, S. J., Wuraola, A., and
Pearse, G. D. (2022). Assessing the potential of
backpack-mounted mobile laser scanning systems for
tree phenotyping. Remote Sensing, 14(14).
Lei, B., Janssen, P., Stoter, J., and Biljecki, F. (2023). Chal-
lenges of urban digital twins: A systematic review and
a delphi expert survey. Automation in Construction,
147:104716.
Lim, C. W., Gobeawan, L., Wong, S. T., Wise, D. J., Cheng,
P., Poh, H. J., and Su, Y. (2020). Generation of tree
surface mesh models from point clouds using skin sur-
faces. In 15th International Conference on Computer
Graphics Theory and Applications, pages 83–92.
Lim, C. W., Liu, X., Gobeawan, L., Raghavan, V. S. G.,
Chattoraj, J., and Yang, F. (2023). Species model
parameterisation. In Chen, T.-W., Kahlen, A. F. K.,
and St
¨
utzel, H., editors, 10th International Conference
on Functional-Structural Plant Models (FSPM2023),
pages 68–69.
Lin, E.-S., Teo, L.-S., Yee, A.-T.-K., and Li, Q.-H. (2018).
Populating large scale virtual city models with 3D
trees. In 55th IFLA World Congress, Singapore.
Makowski, M., H
¨
adrich, T., Scheffczyk, J., Michels, D. L.,
Pirk, S., and Pałubicki, W. (2019). Synthetic silvicul-
ture: Multi-scale modeling of plant ecosystems. ACM
Trans. Graph., 38(4).
Moulton, D., Oliveri, H., and Goriely, A. (2020). Multiscale
integration of environmental stimuli in plant tropism
produces complex behaviors. Proceedings of the
National Academy of Sciences (PNAS), 117:32226–
32237.
Mylonas, G., Kalogeras, A., Kalogeras, G., Anagnostopou-
los, C., Alexakos, C., and Mu
˜
noz, L. (2021). Digital
twins from smart manufacturing to smart cities: A sur-
vey. IEEE Access, 9:143222–143249.
National Research Foundation (2018). Vir-
tual Singapore. NRF website
https://www.nrf.gov.sg/programmes/virtual-
singapore.
Niese, T., Pirk, S., Albrecht, M., Benes, B., and Deussen,
O. (2020). Procedural urban forestry.
Prusinkiewicz, P. and Lindenmayer, A. (1996). The Al-
gorithmic Beauty of Plants. Springer-Verlag, Berlin,
Heidelberg.
Raghavan, V. S. G., Gobeawan, L., Lim, C. W., Liu, X.,
Chattoraj, J., and Yang, F. (2023). Detecting plant
tropism from lidar data. In Chen, T.-W., Kahlen,
A. F. K., and St
¨
utzel, H., editors, Book of Abstracts
of the 10th International Conference on Functional-
Structural Plant Models (FSPM2023), pages 123–
124.
Siev
¨
anen, R., Godin, C., Dejong, T., and Nikinmaa, E.
(2014). Functional-structural plant models: A grow-
ing paradigm for plant studies. Annals of botany,
114:599–603.
Soon, K. H. and Khoo, V. H. S. (2017). CITYGML
MODELLING FOR SINGAPORE 3D NATIONAL
MAPPING. In ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, volume XLII-4-W7, pages 37–42.
Copernicus GmbH.
Stava, O., Pirk, S., Kratt, J., Chen, B., M
´
zch, R., Deussen,
O., and Benes, B. (2014). Inverse procedural mod-
elling of trees. Comput. Graph. Forum, 33(6):118–
131.
Talle, J. and Kosinka, J. (2020). Evolving l-systems in
a competitive environment. In Magnenat-Thalmann,
N., Stephanidis, C., Wu, E., Thalmann, D., Sheng,
B., Kim, J., Papagiannakis, G., and Gavrilova, M.,
editors, Advances in Computer Graphics, pages 326–
350, Cham. Springer International Publishing.
Vos, J., Evers, J. B., Buck-Sorlin, G. H., Andrieu, B.,
Chelle, M., and de Visser, P. H. B. (2010). Func-
tional–structural plant modelling: a new versatile tool
in crop science. Journal of Experimental Botany,
61(8):2101–2115.
Yi, L., Li, H., Guo, J., Deussen, O., and Zhang, X. (2018).
Tree growth modelling constrained by growth equa-
tions. Computer Graphics Forum, 37(1):239–253.
TreeSpecies-PC2DT: Automated Tree Species Modeling from Point Clouds to Digital Twins
91