![](bg7.png)
6 CONCLUSIONS AND FUTURE
WORK
This study proposed the development of an automatic
tool for classifying fuel prices to replace the statisti-
cal approach previously used by SEFAZ in the state
of Sergipe. Five commonly applied text classification
techniques were studied, evaluated, and compared.
Upon completing algorithm execution and evaluation,
it became evident that the naive Bayes classification
algorithm was the most efficient in addressing the pro-
posed problem and forming the developed tool.
After implementation, continuous evaluation, and
successful use, it was concluded that the system
exhibits high reliability and effectiveness. Conse-
quently, the system was adopted by the tax auditor
team responsible for the fuel sector. Its use has sig-
nificantly improved the accuracy and speed of calcu-
lating the averages used for the PMPF. It is worth not-
ing that the results of classifications performed in a
real-life scenario were audited and approved by the
gas station union in Sergipe.
The success achieved in implementing the fuel
classifier highlights the potential of applying this pat-
tern recognition algorithm in tax scenarios. The re-
sults indicate that the tool may function in a broader
scope, although there is no guarantee that the high de-
gree of assertiveness obtained will be maintained if
applied to products from other economic segments.
Potential future work may involve extending clas-
sification algorithms to other tax segments. The re-
sults underscore the possibility of employing some of
these techniques to formulate tax guidelines, a fiscal
resource that monitors the prices of specific products
for tax collection, price monitoring, and price trans-
parency for the end consumer.
This study was financed in part by the
Coordenac¸
˜
ao de Aperfeic¸oamento de Pessoal de
N
´
ıvel Superior, Brasil (CAPES), Finance Code 001.
REFERENCES
Batista, R. d. A., Bagatini, D. D., and Frozza, R. (2018).
Classificac¸
˜
ao autom
´
atica de c
´
odigos NCM utilizando
o algoritmo na
¨
ıve bayes. iSys-Brazilian Journal of In-
formation Systems, 11(2):4–29.
Besag, J. and Diggle, P. J. (1977). Simple Monte Carlo tests
for spatial pattern. Applied Statistics., 26(3).
Brasil (1996). Lei complementar nº 87, de 13 de setembro
de 1996. Available at: http://www.planalto.gov.br/cc
ivil\ 03/leis/LCP/Lcp87.htm. Last accessed: 8 jun,
2022.
Brasil SPED (2016). NFC-e. Available at: http://sped.rfb.g
ov.br/pagina/show/1519. Last accessed: 8 jun, 2022.
Caldiera, V. R. B. G. and Rombach, H. D. (1994). The goal
question metric approach. Encyclopedia of software
engineering, pages 528–532.
Dias, E. R. F. and J
´
unior, J. C. X. (2022). Classificac¸
˜
ao
autom
´
atica de produtos comercializados por
´
org
˜
aos
p
´
ublicos do Rio Grande do Norte atrav
´
es de comit
ˆ
e de
classificadores. Research, Society and Development,
11(9):e29211931836–e29211931836.
Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern
Classification. Wiley, New York, 2nd edition.
D
¨
onmez, P. (2013). Introduction to Machine Learning. Nat-
ural Language Engineering, 19(2):285–288.
Han, J., Pei, J., and Kamber, M. (2011). Data mining: con-
cepts and techniques. Elsevier.
Jarude, J. N. D. M. (2020). O estado da arte da
fiscalizac¸
˜
ao tribut
´
aria federal e o uso de intelig
ˆ
encia
artificial. Publicac¸
˜
oes de Parceiros da Enap —
Financ¸as P
´
ublicas.
Kubat, M. (2017). An Introduction to Machine Learning.
Springer International Publishing, Gewerbestrasse 11,
6330 Cham, Switzerland, 2nd edition.
Madeira, R. d. O. C. (2015). Aplicac¸
˜
ao de t
´
ecnicas de
minerac¸
˜
ao de texto na detecc¸
˜
ao de discrep
ˆ
ancias em
documentos fiscais. PhD thesis, FGV EMAP.
Purohit, A., Atre, D., Jaswani, P., and Asawara, P. (2015).
Text classification in data mining. International Jour-
nal of Scientific and Research Publications.
Queiroz, J. V., Lima, N. C., Oliveria, S. V. W. B. d., Martins,
E. S., and Oliveira, M. M. B. d. (2014). Considerac¸
˜
oes
tribut
´
arias do combust
´
ıvel etanol hidratado. Revista de
Administrac¸
˜
ao e Ci
ˆ
encias Cont
´
abeis do IDEAU.
Rezende, F. (2009). ICMS: Como era, o que mudou
ao longo do tempo, perspectivas e novas mudanc¸as.
Available at: https://efaz.fazenda.pr.gov.br/sites/d
efault/arquivos restritos/files/migrados/File/Forum
Fiscal dos Estados/FFEB Caderno n 10.pdf. Last
accessed: 8 jun, 2022.
Santo, E. (2021). Nota de esclarecimento. Available at:
https://sefaz.es.gov.br/Media/Sefaz/Not\%C3\%A
Dcias/Nota\%20de\%20esclarecimento\%20sobr
e\%20combust\%C3\%ADveis\%20(1).pdf. Last
accessed: 8 jun, 2022.
Scikit-learn (2022). Scikit-learn: Machine Learning on
Python — SVM — scores and probabilities. Avail-
able at: https://scikit-learn.org/stable/modules/svm.
html#scores-and-probabilities. Last accessed: 8 jun,
2022.
Wohlin, C., Runeson, P., H
¨
ost, M., Ohlsson, M. C., Reg-
nell, B., and Wessl
´
en, A. (2012). Experimentation in
software engineering. Springer Science & Business
Media.
Fuel Classification in Electronic Tax Documents
343