
7 CONCLUSION
In this study, we propose a new method applied to
GI-OCT to reduce the number of measurements. We
used the GIDC method, where the reconstruction re-
sults are added to a neural network, utilizing the fact
that neural networks are inherently low resistance to
natural signals and high resistance to noise.
We accomplished the reconstruction of GI-OCT
images in simulation and obtained clear images at
β=10%, greatly reducing the number of measure-
ments required for reconstruction in a size of 64 ×64.
It was experimentally verified that the method can en-
hance the reconstructed image at 100 iterations.
However, due to some problems, the SSIM values
could be better. This result is due to the background
light problem, which needs to be solved first in the fu-
ture to get more correct results. It may also be due to
the fact that different GI calculation methods can af-
fect the imaging results. Therefore, it is necessary to
compare the effects of different GI calculation meth-
ods on the reconstructed images, which are computed
ghost imaging (CGI), pseudo-inverse ghost imaging
(PGI), and differential pseudo-inverse ghost imaging
(DPGI) (Don, 2019; Ferri et al., 2010; Zhang et al.,
2014). In addition, the number of speckles in the GI-
OCT illumination pattern can also greatly impact the
results and is an issue we need to research in the fu-
ture.
In the next step, we are going to apply this new
technique to obtain real-time, high-resolution images
of multilayers in scattering media of GI-OCT mea-
surements.
REFERENCES
Bromberg, Y., Katz, O., and Silberberg, Y. (2009). Ghost
imaging with a single detector. Physical Review A -
Atomic, Molecular, and Optical Physics, 79(5):1–4.
Chen, W. and Chen, X. (2013). Ghost imaging for three-
dimensional optical security. Applied Physics Letters,
103(22):1–5.
Devaux, F., Moreau, P.-A., Denis, S., and Lantz, E.
(2016). Computational temporal ghost imaging. Op-
tica, 3(7):698.
Don, M. (2019). An Introduction to Computational Ghost
Imaging with Example Code.
Ferri, F., Magatti, D., Lugiato, L. A., and Gatti, A. (2010).
Differential ghost imaging. Physical Review Letters,
104(25):1–4.
Gambichler, T., Moussa, G., Sand, M., Sand, D., Altmeyer,
P., and Hoffmann, K. (2005). Applications of opti-
cal coherence tomography in dermatology. Journal of
Dermatological Science, 40(2):85–94.
Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stin-
son, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory,
K., Puliafito, C. A., and Fujimoto, J. G. (1991). Opti-
cal coherence tomography. Science, 254(5035):1178–
1181.
Huyan, D., Lagrosas, N., and Shiina, T. (2022). Target
imaging in scattering media using ghost imaging opti-
cal coherence tomography. APL Photonics, 7(8).
Huyan, D., Lagrosas, N., and Shiina, T. (2023). Optical
properties analysis of scattering media based on gi-oct
imaging. Photonics, 10(2).
Katkovnik, V. and Astola, J. (2012). Compressive sensing
computational ghost imaging. Journal of the Optical
Society of America A, 29(8):1556.
Kirillin, M. Y., Priezzhev, A. V., and Myllyl
¨
a, R. (2008).
Role of multiple scattering in formation of OCT skin
images. Quantum Electronics, 38(6):570–575.
Lempitsky, V., Vedaldi, A., and Ulyanov, D. (2018). Deep
Image Prior. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 128(7):9446–
9454.
Lindell, D. B. and Wetzstein, G. (2020). Three-dimensional
imaging through scattering media based on confo-
cal diffuse tomography. Nature Communications,
11(1):1–8.
Lyu, M., Wang, W., Wang, H., Wang, H., Li, G., Chen,
N., and Situ, G. (2017). Deep-learning-based ghost
imaging. Scientific Reports, 7(1):1–6.
Miot, C. A. G. A., Yczkowski, P. I. R., Riberg, A. R. I. T. F.,
Udley, J. O. H. N. M. D., and Enty, G. O. G. (2019).
Ghost optical coherence tomography. 27(17):24114–
24122.
Olivieri, L., Gongora, J. S. T., Peters, L., Cecconi, V.,
Cutrona, A., Tunesi, J., Tucker, R., Pasquazi, A.,
and Peccianti, M. (2020). Hyperspectral terahertz
microscopy via nonlinear ghost imaging. Optica,
7(2):186.
Ryczkowski, P., Barbier, M., Friberg, A. T., Dudley, J. M.,
and Genty, G. (2016). Ghost imaging in the time do-
main. Nature Photonics, 10(3):167–170.
Schwartz, M., Levine, A., and Markowitz, O. (2017). Op-
tical coherence tomography in dermatology. Cutis,
100(3):163–166.
Shapiro, J. H. (2008). Computational ghost imaging.
Physical Review A - Atomic, Molecular, and Optical
Physics, 78(6):1–4.
Shiina, T., Moritani, Y., Ito, M., and Okamura, Y. (2003).
Long-optical-path scanning mechanism for optical co-
herence tomography. Applied Optics, 42(19):3795.
Sinclair, H., Bourantas, C., Bagnall, A., Mintz, G. S., and
Kunadian, V. (2015). OCT for the identification of
vulnerable plaque in acute coronary syndrome. JACC:
Cardiovascular Imaging, 8(2):198–209.
Spaide, R. F., Fujimoto, J. G., Waheed, N. K., Sadda, S. R.,
and Staurenghi, G. (2018). Optical coherence tomog-
raphy angiography. Progress in Retinal and Eye Re-
search, 64(June 2017):1–55.
Vabre, L., Dubois, A., Boccara, C., Vabre, L., Dubois, A.,
Boccara, C., Vabre, L., Dubois, A., and Boccara, A. C.
PHOTOPTICS 2024 - 12th International Conference on Photonics, Optics and Laser Technology
34