
Kligler, N., Katz, S., and Tal, A. (2018). Document en-
hancement using visibility detection. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2374–2382.
Kluger, F., Brachmann, E., Ackermann, H., Rother, C.,
Yang, M. Y., and Rosenhahn, B. (2020). Consac: Ro-
bust multi-model fitting by conditional sample con-
sensus. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Kwiatkowski, M. and Hellwich, O. (2022). Specularity,
shadow, and occlusion removal from image sequences
using deep residual sets. In VISIGRAPP (4: VISAPP),
pages 118–125.
Kwiatkowski, M., Matern, S., and Hellwich, O. (2022).
Diar: Deep image alignment and reconstruction using
swin transformers. In International Joint Conference
on Computer Vision, Imaging and Computer Graph-
ics, pages 248–267. Springer.
Le, H., Liu, F., Zhang, S., and Agarwala, A. (2020). Deep
homography estimation for dynamic scenes. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).
Li, Z. and Snavely, N. (2018). Megadepth: Learning single-
view depth prediction from internet photos. In Com-
puter Vision and Pattern Recognition (CVPR).
Lin, C.-H., Ma, W.-C., Torralba, A., and Lucey, S. (2021).
Barf: Bundle-adjusting neural radiance fields. In
IEEE International Conference on Computer Vision
(ICCV).
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Com-
puter Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part V 13, pages 740–755. Springer.
Lindenberger, P., Sarlin, P.-E., Larsson, V., and Pollefeys,
M. (2021). Pixel-Perfect Structure-from-Motion with
Featuremetric Refinement. In ICCV.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Proceedings of the seventh
IEEE international conference on computer vision,
volume 2, pages 1150–1157. Ieee.
Mandal, M. and Vipparthi, S. K. (2021). An empirical re-
view of deep learning frameworks for change detec-
tion: Model design, experimental frameworks, chal-
lenges and research needs. IEEE Transactions on In-
telligent Transportation Systems.
Mikolajczyk, K. and Schmid, C. (2005). A perfor-
mance evaluation of local descriptors. IEEE trans-
actions on pattern analysis and machine intelligence,
27(10):1615–1630.
Mishchuk, A., Mishkin, D., Radenovic, F., and Matas,
J. (2017). Working hard to know your neighbor's
margins: Local descriptor learning loss. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.
Qu, L., Tian, J., He, S., Tang, Y., and Lau, R. W. (2017). De-
shadownet: A multi-context embedding deep network
for shadow removal. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 4067–4075.
Riba, E., Mishkin, D., Ponsa, D., Rublee, E., and Brad-
ski, G. (2020). Kornia: an open source differentiable
computer vision library for pytorch. In Proceedings of
the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 3674–3683.
Roberts, M., Ramapuram, J., Ranjan, A., Kumar, A.,
Bautista, M. A., Paczan, N., Webb, R., and Susskind,
J. M. (2021). Hypersim: A photorealistic synthetic
dataset for holistic indoor scene understanding. In
International Conference on Computer Vision (ICCV)
2021.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). Orb: An efficient alternative to sift or surf.
In 2011 International conference on computer vision,
pages 2564–2571. Ieee.
Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich,
A. (2020). Superglue: Learning feature matching
with graph neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947.
Schops, T., Schonberger, J. L., Galliani, S., Sattler, T.,
Schindler, K., Pollefeys, M., and Geiger, A. (2017).
A multi-view stereo benchmark with high-resolution
images and multi-camera videos. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3260–3269.
Shen, X., Darmon, F., Efros, A. A., and Aubry, M. (2020).
Ransac-flow: generic two-stage image alignment. In
16th European Conference on Computer Vision.
Sun, J., Shen, Z., Wang, Y., Bao, H., and Zhou, X. (2021).
LoFTR: Detector-free local feature matching with
transformers. CVPR.
Tan, W. R., Chan, C. S., Aguirre, H., and Tanaka, K. (2019).
Improved artgan for conditional synthesis of natural
image and artwork. IEEE Transactions on Image Pro-
cessing, 28(1):394–409.
Tareen, S. A. K. and Saleem, Z. (2018). A comparative anal-
ysis of sift, surf, kaze, akaze, orb, and brisk. In 2018
International conference on computing, mathematics
and engineering technologies (iCoMET), pages 1–10.
IEEE.
Toyama, K., Krumm, J., Brumitt, B., and Meyers, B.
(1999). Wallflower: Principles and practice of back-
ground maintenance. In Proceedings of the seventh
IEEE international conference on computer vision,
volume 1, pages 255–261. IEEE.
Truong, P., Danelljan, M., and Timofte, R. (2020). GLU-
Net: Global-local universal network for dense flow
and correspondences. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020.
Truong, P., Danelljan, M., Timofte, R., and Gool, L. V.
(2021). Pdc-net+: Enhanced probabilistic dense cor-
respondence network. In Preprint.
Vacavant, A., Chateau, T., Wilhelm, A., and Lequievre,
L. (2013). A benchmark dataset for outdoor fore-
ground/background extraction. In Computer Vision-
ACCV 2012 Workshops: ACCV 2012 International
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
188