Process Mining Workshops - ICPM, pages 315–327.
Springer.
Bottrighi, A., Piovesan, L., Terenziani, P., et al. (2018). A
general framework for the distributed management of
exceptions and comorbidities. In HEALTHINF, pages
66–76.
Buijs, J. C. A. M., van Dongen, B. F., and van der Aalst,
W. M. P. (2014). Quality dimensions in process dis-
covery: The importance of fitness, precision, general-
ization and simplicity. Int. J. Cooperative Inf. Syst.,
23(1).
Carmona, J., van Dongen, B. F., Solti, A., et al. (2018). Con-
formance Checking - Relating Processes and Models.
Springer.
Chin, S. C., Zolfaghar, K., Roy, S. B., et al. (2014). Divide-
n-discover: Discretization based data exploration
framework for healthcare analytics. In HEALTHINF,
pages 329–333. SciTePress.
de Vries, G., Neira, R. A. Q., Geleijnse, G., et al. (2017).
Towards process mining of EMR data - case study for
sepsis management. In HEALTHINF, pages 585–593.
SciTePress.
Dunn, O. J. (1964). Multiple comparisons using rank sums.
Technometrics, 6(3):241–252.
Fisher, R. A. (1992). Statistical Methods for Research
Workers. Springer New York, New York, NY.
Guzzo, A., Rullo, A., and Vocaturo, E. (2022). Process min-
ing applications in the healthcare domain: A compre-
hensive review. WIREs Data Mining and Knowledge
Discovery, 12(2).
Kerexeta, J., Artetxe, A., Escolar, V., et al. (2018). Predict-
ing 30-day readmission in heart failure using machine
learning techniques. In HEALTHINF, pages 308–315.
Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in
one-criterion variance analysis. Journal of the Ameri-
can Statistical Association, 47(260):583–621.
Kusuma, G. P., Sykes, S., McInerney, C., et al. (2020). Pro-
cess mining of disease trajectories: A feasibility study.
In International Joint Conference on Biomedical En-
gineering Systems and Technologies: HEALTHINF,
pages 705–712. SCITEPRESS.
Levin, A., Stevens, P. E., Bilous, R. W., et al. (2013). Kid-
ney disease: Improving global outcomes (kdigo) ckd
work group. kdigo 2012 clinical practice guideline for
the evaluation and management of chronic kidney dis-
ease. Kidney international supplements, 3(1):1–150.
Mans, R., Schonenberg, H., Leonardi, G., et al. (2008). Pro-
cess mining techniques: an application to stroke care.
In MIE, pages 573–578. IOS Press.
Mans, R., van der Aalst, W. M. P., and Vanwersch, R.
J. B. (2015). Process Mining in Healthcare - Eval-
uating and Exploiting Operational Healthcare Pro-
cesses. Springer Briefs in Business Process Manage-
ment. Springer.
McDonagh, T. A., Metra, M., Adamo, M., et al. (2021).
2021 ESC guidelines for the diagnosis and treatment
of acute and chronic heart failure. European Heart
Journal, 42(36):3599–3726.
Munoz-Gama, J., Martin, N., Fern
´
andez-Llatas, C., et al.
(2022). Process mining for healthcare: Characteristics
and challenges. J. Biomed. Informatics, 127:103994.
Pegoraro, M., Narayana, M. B. S., Benevento, E., et al.
(2021). Analyzing medical data with process min-
ing: A COVID-19 case study. volume 444 of Lec-
ture Notes in Business Information Processing, pages
39–44. Springer.
Reisig, W. (1985). Petri Nets: An Introduction, volume 4
of EATCS Monographs on Theoretical Computer Sci-
ence. Springer.
Romero-Gonz
´
alez, G., Ravassa, S., Gonz
´
alez, O., et al.
(2020). Burden and challenges of heart failure in pa-
tients with chronic kidney disease. a call to action. Ne-
frolog
´
ıa, 40(3):223–236.
Roy, S. B. and Chin, S.-C. (2014). Prediction and manage-
ment of readmission risk for congestive heart failure.
In HEALTHINF, pages 523–528. SciTePress.
Sattar, N., Lee, M. M. Y., Kristensen, S. L., et al. (2021).
Cardiovascular, mortality, and kidney outcomes with
GLP-1 receptor agonists in patients with type 2 dia-
betes: a systematic review and meta-analysis of ran-
domised trials. The Lancet Diabetes & Endocrinol-
ogy, 9(10):653–662.
van der Aalst, W. M. P. (2016). Process Mining - Data
Science in Action, Second Edition. Springer.
Weerdt, J. D., Backer, M. D., Vanthienen, J., et al. (2010).
A critical evaluation study of model-log metrics in
process discovery. In Business Process Management
Workshops, pages 158–169. Springer.
Zelniker, T. A., Wiviott, S. D., Raz, I., et al. (2019). SGLT2
inhibitors for primary and secondary prevention of
cardiovascular and renal outcomes in type 2 diabetes:
a systematic review and meta-analysis of cardiovascu-
lar outcome trials. The Lancet, 393(10166):31–39.
Zweth, J., Askari, M., Spruit, M., et al. (2018). Devices
used for non-invasive tele homecare for cardiovascular
patients: A systematic literature review. In HEALTH-
INF, pages 300–307. SciTePress.
Process-Aware Analysis of Treatment Paths in Heart Failure Patients: A Case Study
515