
Calheiros, R. N., Masoumi, E., Ranjan, R., and Buyya, R.
(2015). Workload prediction using arima model and
its impact on cloud applications’ qos. IEEE Transac-
tions on Cloud Computing, 3(4):449–458.
Calzarossa, M. C., Massari, L., and Tessera, D. (2016).
Workload characterization: A survey revisited. ACM
Comput. Surv., 48(3).
Chen, W., Ye, K., Wang, Y., Xu, G., and Xu, C.-Z. (2018).
How does the workload look like in production cloud?
analysis and clustering of workloads on alibaba cluster
trace. In 2018 IEEE 24th International Conference
on Parallel and Distributed Systems (ICPADS), pages
102–109.
Cheng, Y., Chai, Z., and Anwar, A. (2018). Characteriz-
ing co-located datacenter workloads: An alibaba case
study. In Proceedings of the 9th Asia-Pacific Work-
shop on Systems, APSys ’18, New York, NY, USA.
Association for Computing Machinery.
Ching-Fu Chen, Y.-H. C. and Chang, Y.-W. (2009). Sea-
sonal arima forecasting of inbound air travel arrivals
to taiwan. Transportmetrica, 5(2):125–140.
Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fon-
toura, M., and Bianchini, R. (2017). Resource cen-
tral: Understanding and predicting workloads for im-
proved resource management in large cloud platforms.
In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 153–167.
Da Costa, G., Grange, L., and de Courchelle, I. (2018).
Modeling, classifying and generating large-scale
google-like workload. Sustainable Computing: Infor-
matics and Systems, 19:305–314.
E. P. Box, G., M. Jenkins, G., C. Reinsel, G., and M. Ljung,
G. (1970). Time Series Analysis: Forecasting and
Control. Holden-Day, San Francisco.
Fattah, J., Ezzine, L., Aman, Z., Moussami, H. E., and
Lachhab, A. (2018). Forecasting of demand using
arima model. International Journal of Engineering
Business Management, 10:1847979018808673.
Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S.,
and Akella, A. (2014). Multi-resource packing for
cluster schedulers. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, page
455–466, New York, NY, USA. Association for Com-
puting Machinery.
Guo, J., Chang, Z., Wang, S., Ding, H., Feng, Y., Mao, L.,
and Bao, Y. (2019). Who limits the resource efficiency
of my datacenter: An analysis of alibaba datacenter
traces. In 2019 IEEE/ACM 27th International Sympo-
sium on Quality of Service (IWQoS), pages 1–10.
Herbst, N. R., Huber, N., Kounev, S., and Amrehn, E.
(2013). Self-adaptive workload classification and
forecasting for proactive resource provisioning. In
Proceedings of the 4th ACM/SPEC International Con-
ference on Performance Engineering, ICPE ’13, page
187–198, New York, NY, USA. Association for Com-
puting Machinery.
Hyndman, R. J. (2010). Forecasting with long seasonal pe-
riods. https://robjhyndman.com/hyndsight/longseas
onality/. [Online; accessed 15-January-2023].
Janardhanan, D. and Barrett, E. (2017). Cpu workload fore-
casting of machines in data centers using lstm recur-
rent neural networks and arima models. In 2017 12th
International Conference for Internet Technology and
Secured Transactions (ICITST), pages 55–60.
Jiang, C., Qiu, Y., Shi, W., Ge, Z., Wang, J., Chen, S., C
´
erin,
C., Ren, Z., Xu, G., and Lin, J. (2022). Characteriz-
ing co-located workloads in alibaba cloud datacenters.
IEEE Transactions on Cloud Computing, 10(4):2381–
2397.
Juan, D.-C., Li, L., Peng, H.-K., Marculescu, D., and
Faloutsos, C. (2014). Beyond poisson: Modeling
inter-arrival time of requests in a datacenter. In Tseng,
V. S., Ho, T. B., Zhou, Z.-H., Chen, A. L. P., and Kao,
H.-Y., editors, Advances in Knowledge Discovery and
Data Mining, pages 198–209, Cham. Springer Inter-
national Publishing.
Koltuk, F. and Schmidt, E. G. (2020). A novel method
for the synthetic generation of non-i.i.d workloads for
cloud data centers. In 2020 IEEE Symposium on Com-
puters and Communications (ISCC), pages 1–6.
Liu, Q. and Yu, Z. (2018). The elasticity and plasticity
in semi-containerized co-locating cloud workload: A
view from alibaba trace. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC ’18, page
347–360, New York, NY, USA. Association for Com-
puting Machinery.
Mishra, S. (2020). Methods for Normality Test with Appli-
cation in Python. https://towardsdatascience.com/m
ethods-for-normality-test-with-application-in-pyt
hon-bb91b49ed0f5. [Online; accessed 15-February-
2023].
Mitrani, A. (2020). Time Series Decomposition and
Statsmodels Parameters. https://towardsdatascien
ce.com/time-series-decomposition-and-statsmodels
-parameters-69e54d035453. [Online; accessed 19-
January-2023].
Moreno, I. S., Garraghan, P., Townend, P., and Xu, J.
(2014). Analysis, modeling and simulation of work-
load patterns in a large-scale utility cloud. IEEE
Transactions on Cloud Computing, 2(2):208–221.
Reiss, C., Wilkes, J., and Hellerstein, J. L. (2011). Google
cluster-usage traces: format+ schema. Google Inc.,
White Paper, 1:1–14.
Siami-Namini, S., Tavakoli, N., and Siami Namin, A.
(2018). A comparison of arima and lstm in fore-
casting time series. In 2018 17th IEEE International
Conference on Machine Learning and Applications
(ICMLA), pages 1394–1401.
Tirmazi, M., Barker, A., Deng, N., Haque, M. E., Qin,
Z. G., Hand, S., Harchol-Balter, M., and Wilkes, J.
(2020). Borg: the next generation. In Proceedings
of the fifteenth European conference on computer sys-
tems, pages 1–14.
Verma, A., Korupolu, M., and Wilkes, J. (2014). Evaluating
job packing in warehouse-scale computing. In 2014
IEEE International Conference On Cluster Comput-
ing (CLUSTER), pages 48–56, Los Alamitos, CA,
USA. IEEE Computer Society.
Xu, R., Mitra, S., Rahman, J., Bai, P., Zhou, B., Bronevet-
sky, G., and Bagchi, S. (2018). Pythia: Improving
ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods
568