
Balunovic, M., Bielik, P., and Vechev, M. T. (2018). Learn-
ing to solve SMT formulas. In NeurIPS, pages 10338–
10349.
Barrett, C., Fontaine, P., and Tinelli, C. (2016). The
Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org.
Barrett, C., Stump, A., and Tinelli, C. (2010). The SMT-
LIB Standard: Version 2.0. In SMT Workshop.
Barrett, C. W., Conway, C. L., Deters, M., Hadarean, L.,
Jovanovic, D., King, T., Reynolds, A., and Tinelli, C.
(2011). CVC4. In Gopalakrishnan, G. and Qadeer,
S., editors, Computer Aided Verification - 23rd In-
ternational Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings, volume 6806 of
Lecture Notes in Computer Science, pages 171–177.
Springer.
Bengio, Y., Lodi, A., and Prouvost, A. (2020). Machine
learning for combinatorial optimization: a method-
ological tour d’horizon. European Journal of Oper-
ational Research.
Bjørner, N. and de Moura, L. (2014). Applications of smt
solvers to program verification. Notes for the Summer
School on Formal Techniques.
Bruttomesso, R., Cimatti, A., Franz
´
en, A., Griggio, A.,
and Sebastiani, R. (2008). The mathsat 4 smt solver:
Tool paper. In Computer Aided Verification: 20th
International Conference, CAV 2008 Princeton, NJ,
USA, July 7-14, 2008 Proceedings 20, pages 299–303.
Springer.
Cappart, Q., Ch
´
etelat, D., Khalil, E., Lodi, A., Morris, C.,
and Veli
ˇ
ckovi
´
c, P. (2021). Combinatorial optimiza-
tion and reasoning with graph neural networks. arXiv
preprint arXiv:2102.09544.
Crouse, M., Abdelaziz, I., Cornelio, C., Thost, V., Wu,
L., Forbus, K., and Fokoue, A. (2019). Improv-
ing graph neural network representations of logi-
cal formulae with subgraph pooling. arXiv preprint
arXiv:1911.06904.
De Moura, L. and Bjørner, N. (2008). Z3: An efficient smt
solver. In International conference on Tools and Algo-
rithms for the Construction and Analysis of Systems,
pages 337–340. Springer.
de Moura, L. and Bjørner, N. (2012). Applications and chal-
lenges in satisfiability modulo theories. In Workshop
on Invariant Generation (WING), volume 1, pages 1–
11. EasyChair.
Dutertre, B. (2014). Yices 2.2. In International Confer-
ence on Computer Aided Verification, pages 737–744.
Springer.
Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy,
P., Li, M., and Smola, A. (2020). Autogluon-tabular:
Robust and accurate automl for structured data. arXiv
preprint arXiv:2003.06505.
Glorot, X., Anand, A., Aygun, E., Mourad, S., Kohli, P., and
Precup, D. (2019). Learning representations of logi-
cal formulae using graph neural networks. In Neural
Information Processing Systems, Workshop on Graph
Representation Learning.
Godefroid, P., Levin, M. Y., and Molnar, D. A. (2012).
SAGE: whitebox fuzzing for security testing. Com-
mun. ACM, 55(3):40–44.
Hamilton, W. L. (2020). Graph representation learning.
Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, 14:1–159.
H
˚
ula, J., Moj
ˇ
z
´
ı
ˇ
sek, D., and Janota, M. (2021). Graph neural
networks for scheduling of smt solvers. In 2021 IEEE
33rd International Conference on Tools with Artificial
Intelligence (ICTAI), pages 447–451. IEEE.
Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H.,
and Sellmann, M. (2011). Algorithm selection and
scheduling. In International Conference on Principles
and Practice of Constraint Programming.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. (2017). Lightgbm: A highly
efficient gradient boosting decision tree. Advances in
neural information processing systems, 30.
Kerschke, P., Hoos, H. H., Neumann, F., and Trautmann, H.
(2019). Automated algorithm selection: Survey and
perspectives. Evolutionary computation, 27(1):3–45.
Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden,
J., and Shoham, Y. (2003). A portfolio approach to
algorithm selection. In IJCAI, volume 3, pages 1542–
1543.
Leyton-Brown, K., Nudelman, E., and Shoham, Y. (2009).
Empirical hardness models: Methodology and a case
study on combinatorial auctions. Journal of the ACM
(JACM), 56(4):1–52.
Pimpalkhare, N. (2020). Dynamic algorithm selection for
SMT. In 2020 35th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE),
pages 1376–1378. IEEE.
Ram
´
ırez, N. G., Hamadi, Y., Monfroy,
´
E., and Saubion, F.
(2016). Evolving SMT strategies. In ICTAI.
Scott, J., Niemetz, A., Preiner, M., Nejati, S., and Ganesh,
V. (2021). Machsmt: A machine learning-based algo-
rithm selector for smt solvers. In International Con-
ference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 303–325. Springer.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2017). Grad-cam: Visual
explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626.
Talbi, E.-G. (2020). Machine learning into metaheuristics:
A survey and taxonomy of data-driven metaheuristics.
ACM Computing Surveys.
Wang, M., Tang, Y., Wang, J., and Deng, J. (2017). Premise
selection for theorem proving by deep graph embed-
ding. In NeurIPS.
Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K.
(2008). Satzilla: portfolio-based algorithm selection
for sat. Journal of artificial intelligence research,
32:565–606.
Zhao, W., Ramamritham, K., and Stankovic, J. A.
(1987). Preemptive scheduling under time and re-
source constraints. IEEE Transactions on computers,
100(8):949–960.
Efficient Solver Scheduling and Selection for Satisfiability Modulo Theories (SMT) Problems
367