Bell, S. J. and Lawrence, N. D. (2022). The effect of
task ordering in continual learning. ArXiv preprint,
abs/2205.13323.
Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H.
(2018). Riemannian walk for incremental learning:
Understanding forgetting and intransigence. In Pro-
ceedings of the European conference on computer vi-
sion (ECCV), pages 532–547.
Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., and Hu,
W. (2021). Channel-wise topology refinement graph
convolution for skeleton-based action recognition. In
2021 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2021, Montreal, QC, Canada, Oc-
tober 10-17, 2021, pages 13339–13348. IEEE.
De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia,
X., Leonardis, A., Slabaugh, G., and Tuytelaars, T.
(2021). A continual learning survey: Defying forget-
ting in classification tasks. IEEE transactions on pat-
tern analysis and machine intelligence, 44(7):3366–
3385.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. (2021). An image is worth 16x16 words: Trans-
formers for image recognition at scale. In 9th Interna-
tional Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.
Dwivedi, V. P., Ramp
´
a
ˇ
sek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. (2022). Long range
graph benchmark. Advances in Neural Information
Processing Systems, 35:22326–22340.
Febrinanto, F. G., Xia, F., Moore, K., Thapa, C., and
Aggarwal, C. (2023). Graph lifelong learning: A
survey. IEEE Computational Intelligence Magazine,
18(1):32–51.
Girshick, R. B., Donahue, J., Darrell, T., and Malik, J.
(2014). Rich feature hierarchies for accurate object
detection and semantic segmentation. In 2014 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2014, Columbus, OH, USA, June 23-28,
2014, pages 580–587. IEEE Computer Society.
Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and
Bengio, Y. (2013). An empirical investigation of
catastrophic forgetting in gradient-based neural net-
works. arXiv preprint arXiv:1312.6211.
He, C., Wang, R., and Chen, X. (2022). Rethinking class or-
ders and transferability in class incremental learning.
Pattern Recognition Letters, 161:67–73.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 770–778. IEEE Computer Society.
Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande,
V. S., and Leskovec, J. (2020). Strategies for pre-
training graph neural networks. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.
Isele, D. and Cosgun, A. (2018). Selective experience re-
play for lifelong learning. In McIlraith, S. A. and
Weinberger, K. Q., editors, Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 3302–3309. AAAI Press.
Kipf, T. N. and Welling, M. (2017). Semi-supervised classi-
fication with graph convolutional networks. In 5th In-
ternational Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., et al. (2017).
Overcoming catastrophic forgetting in neural net-
works. Proceedings of the national academy of sci-
ences, 114(13):3521–3526.
Ko, J., Kang, S., and Shin, K. (2022). Begin: Exten-
sive benchmark scenarios and an easy-to-use frame-
work for graph continual learning. ArXiv preprint,
abs/2211.14568.
Li, T., Ke, Q., Rahmani, H., Ho, R. E., Ding, H., and Liu,
J. (2021). Else-net: Elastic semantic network for con-
tinual action recognition from skeleton data. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 13434–13443.
Li, Y., Li, M., Asif, M. S., and Oymak, S. (2022). Provable
and efficient continual representation learning. ArXiv
preprint, abs/2203.02026.
Li, Z. and Hoiem, D. (2017). Learning without forgetting.
IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947.
Lin, S., Ju, P., Liang, Y., and Shroff, N. (2023). Theory
on forgetting and generalization of continual learning.
ArXiv preprint, abs/2302.05836.
Liu, H., Yang, Y., and Wang, X. (2021). Overcom-
ing catastrophic forgetting in graph neural networks.
In Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 8653–8661. AAAI
Press.
Lopez-Paz, D. and Ranzato, M. (2017). Gradient episodic
memory for continual learning. In Guyon, I., von
Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R.,
Vishwanathan, S. V. N., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 6467–6476.
Masana, M., Twardowski, B., and Van de Weijer, J. (2020).
On class orderings for incremental learning. ArXiv
preprint, abs/2007.02145.
McCloskey, M. and Cohen, N. J. (1989). Catastrophic in-
terference in connectionist networks: The sequential
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
648