
Processing (EMNLP-IJCNLP), pages 5185–5194, Hong
Kong, China. Association for Computational Linguistics.
Bapna, A. and Firat, O. (2019). Simple, scalable adap-
tation for neural machine translation. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 1538–1548, Hong Kong, China. Associ-
ation for Computational Linguistics.
Beltagy, I., Lo, K., and Cohan, A. (2019). Scibert: A pre-
trained language model for scientific text. In Conference
on Empirical Methods in Natural Language Processing.
Bodenreider, O. (2004). The unified medical language sys-
tem (umls): integrating biomedical terminology. Nucleic
acids research, 32(suppl 1):D267–D270.
Bosselut, A., Rashkin, H., Sap, M., Malaviya, C., Celiky-
ilmaz, A., and Choi, Y. (2019). COMET: Common-
sense transformers for automatic knowledge graph con-
struction. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages
4762–4779, Florence, Italy. Association for Computa-
tional Linguistics.
Chronopoulou, A., Peters, M., and Dodge, J. (2022). Effi-
cient hierarchical domain adaptation for pretrained lan-
guage models. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
pages 1336–1351, Seattle, United States. Association for
Computational Linguistics.
Colon-Hernandez, P., Havasi, C., Alonso, J. B., Huggins,
M., and Breazeal, C. (2021). Combining pre-trained
language models and structured knowledge. ArXiv,
abs/2101.12294.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Pa-
pers), pages 4171–4186, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.
Di Sciullo, A. M. (2018). Knowledge of language and
knowledge science.
Gu, Y., Tinn, R., Cheng, H., Lucas, M. R., Usuyama, N.,
Liu, X., Naumann, T., Gao, J., and Poon, H. (2020).
Domain-specific language model pretraining for biomed-
ical natural language processing. ACM Transactions on
Computing for Healthcare (HEALTH), 3:1 – 23.
He, B., Zhou, D., Xiao, J., Jiang, X., Liu, Q., Yuan, N. J.,
and Xu, T. (2020). BERT-MK: Integrating graph contex-
tualized knowledge into pre-trained language models. In
Findings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 2281–2290, Online. Associa-
tion for Computational Linguistics.
Hoang, S. N., Nguyen, B., Nguyen, N. P., Luu, S. T., Phan,
H. T., and Nguyen, H. D. (2022). Enhanced task-based
knowledge for lexicon-based approach in vietnamese
hate speech detection. In 2022 14th International Con-
ference on Knowledge and Systems Engineering (KSE),
pages 1–5.
Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. (2019). Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning,
pages 2790–2799. PMLR.
Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. (2022). LoRA: Low-
rank adaptation of large language models. In Interna-
tional Conference on Learning Representations.
Hu, L., Liu, Z., Zhao, Z., Hou, L., Nie, L., and Li, J. (2023).
A survey of knowledge enhanced pre-trained language
models. IEEE Transactions on Knowledge and Data En-
gineering.
Irmer, M., Bobach, C., B
¨
ohme, T., P
¨
uschel, A., and Weber,
L. (2013). Using a chemical ontology for detecting and
classifying chemical terms mentioned in texts. Proceed-
ings of Bio-Ontologies 2013.
Ji, S., Pan, S., Cambria, E., Marttinen, P., and Philip, S. Y.
(2021). A survey on knowledge graphs: Representation,
acquisition, and applications. IEEE transactions on neu-
ral networks and learning systems, 33(2):494–514.
Jin, Q., Dhingra, B., Liu, Z., Cohen, W., and Lu, X. (2019).
PubMedQA: A dataset for biomedical research question
answering. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2567–2577,
Hong Kong, China. Association for Computational Lin-
guistics.
Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-w. H.,
Feng, M., Ghassemi, M., Moody, B., Szolovits, P., An-
thony Celi, L., and Mark, R. G. (2016). Mimic-iii, a
freely accessible critical care database. Scientific data,
3(1):1–9.
Karypis, G. and Kumar, V. (1997). Metis: A software
package for partitioning unstructured graphs, partition-
ing meshes, and computing fill-reducing orderings of
sparse matrices.
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S.,
Li, Q., Shoemaker, B., Thiessen, P., Yu, B., Zaslavsky,
L., Zhang, J., and Bolton, E. (2020). Pubchem in 2021:
New data content and improved web interfaces. Nucleic
Acids Research, 49.
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He,
S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B.,
et al. (2019). Pubchem 2019 update: improved access to
chemical data. Nucleic acids research, 47(D1):D1102–
D1109.
Lai, T. M., Zhai, C., and Ji, H. (2023). Keblm: Knowledge-
enhanced biomedical language models. Journal of
Biomedical Informatics, 143:104392.
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and
Kang, J. (2019). BioBERT: a pre-trained biomedical lan-
guage representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.
Lu, Q., Dou, D., and Nguyen, T. H. (2021). Parameter-
efficient domain knowledge integration from multiple
sources for biomedical pre-trained language models. In
Findings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 3855–3865. Association for
Computational Linguistics.
Diversifying Knowledge Enhancement of Biomedical Language Models Using Adapter Modules and Knowledge Graphs
385