ERDF and Comunitat Valenciana and the tech-
nical support provided by IFIC (CSIC-UV).
REFERENCES
Babacan, S. D., Molina, R., and Katsaggelos, A. K. (2008).
Total variation super resolution using a variational ap-
proach. In 2008 15th IEEE International Conference
on Image Processing, pages 641–644. IEEE.
Bell-Kligler, S., Shocher, A., and Irani, M. (2019). Blind
super-resolution kernel estimation using an internal-
gan. Advances in Neural Information Processing Sys-
tems, 32.
Chambolle, A. and Pock, T. (2016). An introduction to
continuous optimization for imaging. Acta Numerica,
25:161–319.
Combettes, P. L. and Wajs, V. R. (2005). Signal recovery
by proximal forward-backward splitting. Multiscale
modeling & simulation, 4(4):1168–1200.
Dai, T., Cai, J., Zhang, Y., Xia, S.-T., and Zhang, L.
(2019). Second-order attention network for single im-
age super-resolution. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 11065–11074.
Dong, W., Zhang, L., Shi, G., and Li, X. (2013). Non-
locally centralized sparse representation for image
restoration. IEEE Transactions on Image Processing,
22(4):1620–1630.
Dong, W., Zhang, L., Shi, G., and Wu, X. (2011). Im-
age deblurring and super-resolution by adaptive sparse
domain selection and adaptive regularization. IEEE
Transactions on Image Processing, 20(7):1838–1857.
Duran, J., Buades, A., Coll, B., and Sbert, C. (2014). A
nonlocal variational model for pansharpening image
fusion. SIAM Journal on Imaging Sciences, 7(2):761–
796.
Gilboa, G. and Osher, S. (2009). Nonlocal operators with
applications to image processing. Multiscale Model-
ing & Simulation, 7(3):1005–1028.
Keys, R. (1981). Cubic convolution interpolation for digital
image processing. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 29(6):1153–1160.
Lepcha, D. C., Goyal, B., Dogra, A., and Goyal, V. (2023).
Image super-resolution: A comprehensive review, re-
cent trends, challenges and applications. Information
Fusion, 91:230–260.
Li, X. and Orchard, M. (2001). New edge-directed inter-
polation. IEEE Transactions on Image Processing,
10(10):1521–1527.
Lim, B., Son, S., Kim, H., Nah, S., and Mu Lee, K. (2017).
Enhanced deep residual networks for single image
super-resolution. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition
workshops, pages 136–144.
Lu, Z., Li, J., Liu, H., Huang, C., Zhang, L., and Zeng,
T. (2022). Transformer for single image super-
resolution. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 457–466.
Monga, V., Li, Y., and Eldar, Y. C. (2021). Algorithm un-
rolling: Interpretable, efficient deep learning for sig-
nal and image processing. IEEE Signal Processing
Magazine, 38(2):18–44.
Pereira-S
´
anchez, I., Navarro, J., and Duran, J. (2022). What
if image self-similarity can be better exploited in data
fidelity terms? In 2022 IEEE International Confer-
ence on Image Processing (ICIP), pages 3697–3701.
IEEE.
Rudin, L., Osher, S., and Fatemi, E. (1992). Nonlinear total
variation based noise removal algorithms. Physica D:
nonlinear phenomena, 60(1-4):259–268.
Tai, Y., Yang, J., and Liu, X. (2017). Image super-resolution
via deep recursive residual network. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 3147–3155.
Wang, W., Li, F., and Ng, M. (2019). Structural similarity-
based nonlocal variational models for image restora-
tion. IEEE Transactions on Image Processing,
28(9):4260–4272.
Wang, X., Girshick, R., Gupta, A., and He, K. (2018). Non-
local neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR).
Wang, Z., Chen, Y., Shao, W., Li, H., and Zhang, L. (2022).
Swinfuse: A residual swin transformer fusion network
for infrared and visible images. IEEE Transactions on
Instrumentation and Measurement, 71:1–12.
Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., and Zhang,
L. (2016). Image super-resolution: The techniques,
applications, and future. Signal processing, 128:389–
408.
Zhang, K., Gao, X., Tao, D., and Li, X. (2012). Single im-
age super-resolution with non-local means and steer-
ing kernel regression. IEEE Transactions on Image
Processing, 21(11):4544–4556.
Zhang, L. and Wu, X. (2006). An edge-guided image
interpolation algorithm via directional filtering and
data fusion. IEEE Transactions on Image Processing,
15(8):2226–2238.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
198