Bettio, C., Salsi, V., Orsini, M., Calanchi, E., Magnotta, L.,
Gagliardelli, L., Kinoshita, J., Bergamaschi, S., &
Tupler, R. (2021). The Italian National Registry for
FSHD: An enhanced data integration and an analytics
framework towards Smart Health Care and Precision
Medicine for a rare disease. Orphanet Journal of Rare
Diseases, 16(1), 470. https://doi.org/10.1186/s13023-
021-02100-z
Bose, A., & Das, S. (2012). Trial analytics—A tool for
clinical trial management. Acta Poloniae
Pharmaceutica, 69(3), 523–533.
Bottrighi, A., & Terenziani, P. (2016). META-GLARE: A
meta-system for defining your own computer
interpretable guideline system—Architecture and
acquisition. Artificial Intelligence in Medicine, 72, 22–
41. https://doi.org/10.1016/j.artmed.2016.07.002
Chelico, J. D., Wilcox, A. B., Vawdrey, D. K., &
Kuperman, G. J. (2017). Designing a Clinical Data
Warehouse Architecture to Support Quality
Improvement Initiatives. AMIA Annual Symposium
Proceedings, 2016, 381–390.
Farnum, M. A., Mohanty, L., Ashok, M., Konstant, P.,
Ciervo, J., Lobanov, V. S., & Agrafiotis, D. K. (2019).
A dimensional warehouse for integrating operational
data from clinical trials. Database: The Journal of
Biological Databases and Curation, 2019, baz039.
Gao, J., Xiao, C., Glass, L. M., & Sun, J. (2020).
COMPOSE: Cross-Modal Pseudo-Siamese Network
for Patient Trial Matching. Proceedings of the 26th
ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 803–812.
https://doi.org/10.1145/3394486.3403123
Golfarelli, M. (2009). DFM as a Conceptual Model for Data
Warehouse. In J. Wang (Ed.), Encyclopedia of Data
Warehousing and Mining, Second Edition (4 Volumes)
(pp. 638–645). IGI Global. http://www.igi-
global.com/Bookstore/Chapter.aspx?TitleId=10888
Golfarelli, M., & Rizzi, S. (2021). Data Warehouse Design:
Modern principles and methodologies. McGraw-Hill.
Harrer, S., Shah, P., Antony, B., & Hu, J. (2019). Artificial
Intelligence for Clinical Trial Design. Trends in
Pharmacological Sciences, 40(8), 577–591.
https://doi.org/10.1016/j.tips.2019.05.005
ICD-11. (n.d.). Retrieved 27 October 2023, from
https://icd.who.int/en
Karami, M., Rahimi, A., & Shahmirzadi, A. H. (2017).
Clinical Data Warehouse: An Effective Tool to Create
Intelligence in Disease Management. The Health Care
Manager, 36(4), 380–384. https://doi.org/10.1097/
HCM.0000000000000113
Metabase | Business Intelligence, Dashboards, and Data
Visualization. (n.d.). Retrieved 24 January 2023, from
https://www.metabase.com
OpenClinica website. (n.d.). OpenClinica. Retrieved 26
October 2023, from https://www.openclinica.com/
Pezoulas, V. C., Grigoriadis, G. I., Gkois, G., Tachos, N. S.,
Smole, T., Bosnić, Z., Pičulin, M., Olivotto, I.,
Barlocco, F., Robnik-Šikonja, M., Jakovljevic, D. G.,
Goules, A., Tzioufas, A. G., & Fotiadis, D. I. (2021). A
computational pipeline for data augmentation towards
the improvement of disease classification and risk
stratification models: A case study in two clinical
domains. Computers in Biology and Medicine, 134,
104520.
https://doi.org/10.1016/j.compbiomed.2021.104520
Piovesan, L., Molino, G., & Terenziani, P. (2015).
Supporting Multi-Level User-Driven Detection of
Guideline Interactions. Proceedings of the
International Conference on Health Informatics
(HEALTHINF-2015), 413–422. https://doi.org/10.52
20/0005217404130422
Piovesan, L., Terenziani, P., & Theseider Dupré, D. (2020).
Conformance analysis for comorbid patients in Answer
Set Programming. Journal of Biomedical Informatics,
103, 103377. https://doi.org/10.1016/j.jbi.2020.103377
REDCap. (n.d.). Retrieved 12 August 2021, from
https://www.project-redcap.org/
Srinivasa, R. S., Qian, C., Theodorou, B., Spaeder, J., Xiao,
C., Glass, L., & Sun, J. (2022). Clinical trial site
matching with improved diversity using fair policy
learning (arXiv:2204.06501). arXiv. https://doi.org/
10.48550/arXiv.2204.06501
Terenziani, P., Carlini, C., & Montani, S. (2002). Towards
a comprehensive treatment of temporal constraints in
clinical guidelines. Proceedings Ninth International
Symposium on Temporal Representation and
Reasoning, 20–27. https://doi.org/10.1109/TIME.20
02.1027468
Terenziani, P., Montani, S., Bottrighi, A., Molino, G., &
Torchio, M. (2008). Applying artificial intelligence to
clinical guidelines: The GLARE approach. Studies in
Health Technology and Informatics, 139, 273–282.
Wang, Z., Gao, C., Glass, L. M., & Sun, J. (2022). Artificial
Intelligence for In Silico Clinical Trials: A Review.
https://doi.org/10.48550/ARXIV.2209.09023
World Health Organization. (2013). International
classification of diseases for oncology (ICD-O). World
Health Organization. https://apps.who.int/iris/handle/
10665/96612
Yang, E., Scheff, J. D., Shen, S. C., Farnum, M. A., Sefton,
J., Lobanov, V. S., & Agrafiotis, D. K. (2019). A late-
binding, distributed, NoSQL warehouse for integrating
patient data from clinical trials. Database: The Journal
of Biological Databases and Curation, 2019, baz032.
https://doi.org/10.1093/database/baz032