
ACKNOWLEDGEMENTS
This work was supported by Institute for Informa-
tion & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIT)
(No.00223446, Development of object-oriented syn-
thetic data generation and evaluation methods).
REFERENCES
Aanjaneya, M., Han, C., Goldade, R., and Batty, C. (2019).
An efficient geometric multigrid solver for viscous
liquids. Proceedings of the ACM on Computer Graph-
ics and Interactive Techniques, 2(2):1–21.
Batty, C. and Bridson, R. (2008). Accurate viscous
free surfaces for buckling, coiling, and rotating liq-
uids. In In Proc. Symposium on Computer Anima-
tion.ACM/Eurographics, page 219–228.
Cheng, M., Fang, F., Pain, C. C., and Navon, I. (2020).
Data-driven modelling of nonlinear spatio-temporal
fluid flows using a deep convolutional generative ad-
versarial network. Computer Methods in Applied Me-
chanics and Engineering, 365:113000.
Chentanez, N. and M
¨
uller, M. (2011). Real-time eulerian
water simulation using a restricted tall cell grid. In
ACM Siggraph 2011 Papers, pages 1–10.
Gao, Y., Zhang, Q., Li, S., Hao, A., and Qin, H. (2020).
Accelerating liquid simulation with an improved data-
driven method. In Computer Graphics Forum, vol-
ume 39, pages 180–191. Wiley Online Library.
Guo, X., Li, W., and Iorio, F. (2016). Convolutional neural
networks for steady flow approximation. In Proceed-
ings of the 22nd ACM SIGKDD international confer-
ence on knowledge discovery and data mining, pages
481–490.
Harlow, F. H. and Welch, J. E. (1965). Numerical calcu-
lation of time-dependent viscous incompressible flow
of fluid with free surface. The physics of fluids,
8(12):2182–2189.
Jiang, C., Schroeder, C., Selle, A., Teran, J., and Stomakhin,
A. (2015). The affine particle-in-cell method. ACM
Transactions on Graphics (TOG), 34(4):1–10.
Kim, B., Azevedo, V. C., Thuerey, N., Kim, T., Gross, M.,
and Solenthaler, B. (2019). Deep fluids: A generative
network for parameterized fluid simulations. In Com-
puter graphics forum, volume 38, pages 59–70. Wiley
Online Library.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Ladick
`
y, L., Jeong, S., Solenthaler, B., Pollefeys, M., and
Gross, M. (2015). Data-driven fluid simulations us-
ing regression forests. ACM Transactions on Graphics
(TOG), 34(6):1–9.
Li, Z. and Farimani, A. B. (2022). Graph neural network-
accelerated lagrangian fluid simulation. Computers &
Graphics, 103:201–211.
McAdams, A., Sifakis, E., and Teran, J. (2010). A parallel
multigrid poisson solver for fluids simulation on large
grids. In Symposium on Computer Animation, pages
65–73.
Obiols-Sales, O., Vishnu, A., Malaya, N., and Chan-
dramowliswharan, A. (2020). Cfdnet: A deep
learning-based accelerator for fluid simulations. In
Proceedings of the 34th ACM international confer-
ence on supercomputing, pages 1–12.
Richter-Powell, J., Lipman, Y., and Chen, R. T. (2022).
Neural conservation laws: A divergence-free perspec-
tive. arXiv preprint arXiv:2210.01741 (2022).
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. (2020). Learning to
simulate complex physics with graph networks. In
International conference on machine learning, pages
8459–8468. PMLR.
Shao, H., Huang, L., and Michels, D. L. (2022). A fast un-
smoothed aggregation algebraic multigrid framework
for the large-scale simulation of incompressible flow.
ACM Transactions on Graphics (TOG), 41(4):1–18.
Tang, W., Shan, T., Dang, X., Li, M., Yang, F., Xu, S.,
and Wu, J. (2017). Study on a poisson’s equation
solver based on deep learning technique. In 2017
IEEE Electrical Design of Advanced Packaging and
Systems Symposium (EDAPS), pages 1–3.
Thuerey, N., Weißenow, K., Prantl, L., and Hu, X. (2020).
Deep learning methods for reynolds-averaged navier–
stokes simulations of airfoil flows. AIAA Journal,
58(1):25–36.
Tompson, J., Schlachter, K., Sprechmann, P., and Perlin,
K. (2017). Accelerating eulerian fluid simulation with
convolutional networks. In International Conference
on Machine Learning, pages 3424–3433. PMLR.
Treuille, A., Lewis, A., and Popovi
´
c, Z. (2006). Model
reduction for real-time fluids. ACM Transactions on
Graphics (TOG), 25(3):826–834.
Wiewel, S., Kim, B., Azevedo, V. C., Solenthaler, B., and
Thuerey, N. (2020). Latent space subdivision: sta-
ble and controllable time predictions for fluid flow. In
Computer Graphics Forum, volume 39, pages 15–25.
Wiley Online Library.
Xiao, X., Wang, H., and Yang, X. (2019). A cnn-based
flow correction method for fast preview. In Computer
Graphics Forum, volume 38, pages 431–440. Wiley
Online Library.
Xiao, X., Yang, C., and Yang, X. (2018a). Adaptive
learning-based projection method for smoke simula-
tion. Computer Animation and Virtual Worlds, 29(3-
4):e1837.
Xiao, X., Zhou, Y., Wang, H., and Yang, X. (2018b).
A novel cnn-based poisson solver for fluid simula-
tion. IEEE transactions on visualization and computer
graphics, 26(3):1454–1465.
Yang, C., Yang, X., and Xiao, X. (2016). Data-driven pro-
jection method in fluid simulation. Computer Anima-
tion and Virtual Worlds, 27(3-4):415–424.
GRAPP 2024 - 19th International Conference on Computer Graphics Theory and Applications
276