
ACKNOWLEDGEMENTS
This work was supported by the grants GA20-27939S
and GA24-10400S.
REFERENCES
Kodak image datset. http://r0k.us/graphics/kodak/. Ac-
cessed: 2020-01-13.
Asim, M., Shamshad, F., and Ahmed, A. (2020). Blind im-
age deconvolution using deep generative priors. IEEE
Trans Comput Imaging, 6:1493–1506.
Babacan, S. D., Molina, R., and Katsaggelos, A. K. (2009).
Variational bayesian blind deconvolution using a total
variation prior. IEEE Trans Image Process, 18(1):12–
26.
Bredell, G., Erdil, E., Weber, B., and Konukoglu, E. (2023).
Wiener guided dip for unsupervised blind image de-
convolution. In 2023 IEEE/CVF WACV, pages 3046–
3055.
Chan, T. and Wong, C.-K. (1998). Total variation blind de-
convolution. IEEE Trans Image Process, 7(3):370–
375.
Huang, Y., Chouzenoux, E., and Pesquet, J.-C. (2023). Un-
rolled variational bayesian algorithm for image blind
deconvolution. IEEE Trans Image Process, 32:430–
445.
Huo, D., Masoumzadeh, A., Kushol, R., and Yang, Y.-H.
(2023). Blind image deconvolution using variational
deep image prior. IEEE Trans Pattern Anal Mach In-
tell, 45(10):11472–11483.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Kotera, J.,
ˇ
Sm
´
ıdl, V., and
ˇ
Sroubek, F. (2017). Blind decon-
volution with model discrepancies. IEEE Trans Image
Process, 26(5):2533–2544.
Kotera, J.,
ˇ
Sroubek, F., and
ˇ
Sm
´
ıdl, V. (2021). Improving
neural blind deconvolution. In 2021 IEEE ICIP, pages
1954–1958. IEEE.
Levin, A., Weiss, Y., Durand, F., and Freeman, W. T. (2009).
Understanding and evaluating blind deconvolution al-
gorithms. In 2009 IEEE CVPR, pages 1964–1971.
Levin, A., Yair, W., Fredo, D., and Freeman, W. T. (2011).
Understanding blind deconvolution algorithms. IEEE
Trans Pattern Anal Mach Intell, 33(12):2354–2367.
Likas, A. C. and Galatsanos, N. P. (2004). A variational ap-
proach for bayesian blind image deconvolution. IEEE
Trans Signal Process, 52(8):2222–2233.
Miskin, J. and MacKay, D. J. C. (2000). Ensemble learn-
ing for blind image separation and deconvolution. In
Advances in Independent Component Analysis, pages
123–141. Springer, London, 1 edition.
Molina, R., Mateos, J., and Katsaggelos, A. K. (2006).
Blind deconvolution using a variational approach to
parameter, image, and blur estimation. IEEE Trans
Image Process, 15(12):3715–3727.
Perrone, D. and Favaro, P. (2016). A clearer picture of to-
tal variation blind deconvolution. IEEE Trans Pattern
Anal Mach Intell, 38(6):1041–1055.
Ren, D. and et al. (2020). Neural blind deconvolution us-
ing deep priors. In 2020 IEEE/CVF CVPR, pages pp.
3338–3347. IEEE.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In MICCAI 2015, pages 234–241.
Springer, Cham, 1. edition.
Shi, Z., Mettes, P., Maji, S., and Snoek, C. G. (2022). On
measuring and controlling the spectral bias of the deep
image prior. International Journal of Computer Vi-
sion, 130:885–908.
Shin, C. J., Lee, T. B., and Heo, Y. S. (2021). Dual im-
age deblurring using deep image prior. Electronics,
10(17).
Tzikas, D., Likas, A., and Galatsanos, N. (2009). Varia-
tional bayesian sparse kernel-based blind image de-
convolution with student’s-t priors. IEEE Trans Image
Process, 18(4):753–764.
Ulyanov, D., Vedaldi, A., and Lempitski, V. (2018). Deep
image prior. In 2018 IEEE/CVF CVPR, pages 9446–
9454. IEEE.
Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004).
Image quality assessment: from error visibility to
structural similarity. IEEE Trans Image Process,
13(4):600–612.
Wang, Z., Wang, Z., Li, Q., and Bilen, H. (2019). Image
deconvolution with deep image and kernel priors. In
2019 IEEE/CVF ICCVW, pages 980–989.
Wipf, D. and Zhang, H. (2014). Revisiting bayesian blind
deconvolution. Journal of Machine Learning Re-
search, 15:3775–3814.
Yan, Y., Ren, W., Guo, Y., Wang, R., and Cao, X. (2017).
Image deblurring via extreme channels prior. In 2017
IEEE CVPR, pages 6978–6986.
Zhao, Q., Wang, H., Yue, Z., and Meng, D. (2022). A
deep variational bayesian framework for blind image
deblurring. Knowledge-Based Systems, 249.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
566