
some value in the features of the prototype, but did
not relate it as clearly to areas of application.
To develop a visualization prototype for low-
resource language such as Swedish (in comparison to
English) can be considered a positive contribution as
it makes such tools accessible to further audiences.
Thus, the lessons learned from this design study as
well as its limitations and identified suggestions for
improvements could lead to the future work in that
direction from the perspective of visual text analytics,
within and beyond the academic community.
ACKNOWLEDGEMENTS
This work was partially supported through (1) the EL-
LIIT environment for strategic research in Sweden
and (2) the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation. We are also thankful
to all user test participants.
REFERENCES
Aggarwal, C. C. and Zhai, C. (2012). An introduction to text
mining. In Mining Text Data, pages 1–10. Springer.
Alharbi, M. and Laramee, R. (2019). SoS TextVis: An ex-
tended survey of surveys on text visualization. Com-
puters, 8(1).
Axelsson, W. and Engstr
¨
om, N. (2023). Large-scale
exploratory text visualisation. Master’s thesis,
Link
¨
oping University.
Blei, D. M. and Lafferty, J. D. (2006). Dynamic topic mod-
els. In Proc. of ICML, pages 113–120. ACM.
Byron, L. and Wattenberg, M. (2008). Stacked graphs —
Geometry & aesthetics. IEEE TVCG, 14(6):1245–
1252.
Cao, N. and Cui, W. (2016). Introduction to Text Visualiza-
tion. Atlantis Press.
Chowdhary, K. R. (2020). Natural language processing.
In Fundamentals of Artificial Intelligence, pages 603–
649. Springer.
Dou, W., Yu, L., Wang, X., Ma, Z., and Ribarsky, W.
(2013). HierarchicalTopics: Visually exploring large
text collections using topic hierarchies. IEEE TVCG,
19(12):2002–2011.
D
¨
ork, M., Gruen, D., Williamson, C., and Carpendale, S.
(2010). A visual backchannel for large-scale events.
IEEE TVCG, 16(6):1129–1138.
Elmqvist, N. and Yi, J. S. (2015). Patterns for visualization
evaluation. Information Visualization, 14(3):250–269.
Grootendorst, M. (2022). BERTopic: Neural topic mod-
eling with a class-based TF-IDF procedure. arXiV
Preprints, arXiv:2203.05794.
Havre, S., Hetzler, E., Whitney, P., and Nowell, L. (2002).
ThemeRiver: Visualizing thematic changes in large
document collections. IEEE TVCG, 8(1):9–20.
Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F.
(2010). Mastering the Information Age: Solving Prob-
lems with Visual Analytics. Eurographics.
Kucher, K. and Kerren, A. (2015). Text visualization tech-
niques: Taxonomy, visual survey, and community in-
sights. In Proc. of PacificVis, pages 117–121. IEEE.
Kucher, K., Sultanum, N., Daza, A., Simaki, V., Skeppstedt,
M., Plank, B., Fekete, J.-D., and Mahyar, N. (2022).
An interdisciplinary perspective on evaluation and ex-
perimental design for visual text analytics: Position
paper. In Proc. of BELIV. IEEE.
Lam, H., Bertini, E., Isenberg, P., Plaisant, C., and Carpen-
dale, S. (2012). Empirical studies in information visu-
alization: Seven scenarios. IEEE TVCG, 18(9):1520–
1536.
Liu, L., Tang, L., He, L., Zhou, W., and Yao, S. (2016). An
overview of hierarchical topic modeling. In Proc. of
IHMSC, pages 391–394. IEEE.
Liu, S., Wang, X., Collins, C., Dou, W., Ouyang, F., El-
Assady, M., Jiang, L., and Keim, D. A. (2019). Bridg-
ing text visualization and mining: A task-driven sur-
vey. IEEE TVCG, 25(7):2482–2504.
Liu, S., Wu, Y., Wei, E., Liu, M., and Liu, Y. (2013).
StoryFlow: Tracking the evolution of stories. IEEE
TVCG, 19(12):2436–2445.
Miksch, S. and Aigner, W. (2014). A matter of time: Ap-
plying a data–users–tasks design triangle to visual an-
alytics of time-oriented data. Comput. & Graphics,
38:286–290.
Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sen-
tence embeddings using Siamese BERT-networks. In
Proc. of EMNLP-IJCNLP, pages 3982–3992. ACL.
Rekathati, F. (2021). The KBLab blog: Introducing a
Swedish sentence transformer. Online resource.
Rousseeuw, P. (1987). Silhouettes: A graphical aid to the in-
terpretation and validation of cluster analysis. J. Com-
put. Appl. Math., 20:53–65.
Sedlmair, M., Meyer, M., and Munzner, T. (2012). Design
study methodology: Reflections from the trenches and
the stacks. IEEE TVCG, 18(12):2431–2440.
Shneiderman, B. (1996). The eyes have it: A task by
data type taxonomy for information visualizations. In
Proc. of VL, pages 336–343. IEEE.
Spence, R. (2014). Information Visualization: An Introduc-
tion. Springer.
Stasko, J. (2014). Value-driven evaluation of visualizations.
In Proc. of BELIV, pages 46–53. ACM.
Tolegen, G., Toleu, A., Mussabayev, R., and Krassovitskiy,
A. (2022). A clustering-based approach for topic mod-
eling via word network analysis. In Proc. of UBMK,
pages 192–197. IEEE.
Wall, E., Agnihotri, M., Matzen, L., Divis, L., Haass, M.,
Endert, A., and Stasko, J. (2019). A heuristic approach
to value-driven evaluation of visualizations. IEEE
TVCG, 25(1):491–500.
Ware, C. (2021). Information Visualization: Perception for
Design. Morgan Kaufmann, 4th edition.
Wilke, C. (2019). Fundamentals of Data Visualization: A
Primer on Making Informative and Compelling Fig-
ures. O’Reilly Media.
Visualization of Swedish News Articles: A Design Study
677