scheduling problem. In 2014 International Confer-
ence on Artificial Intelligence and Manufacturing En-
gineering (IIE ICAIME2014).
Ben Said, A., Mohammed, E. A., and Mouhoub, M. (2021).
An implicit learning approach for solving the nurse
scheduling problem. In Mantoro, T., Lee, M., Ayu,
M. A., Wong, K. W., and Hidayanto, A. N., edi-
tors, Neural Information Processing, pages 145–157,
Cham. Springer International Publishing.
Ben Said, A. and Mouhoub, M. (2022). A constraint satis-
faction problem (csp) approach for the nurse schedul-
ing problem. In 2022 IEEE Symposium Series on
Computational Intelligence (SSCI), pages 790–795.
Bidar, M. and Mouhoub, M. (2022). Nature-inspired tech-
niques for dynamic constraint satisfaction problems.
Operations Research Forum, 3(2):1–33.
Bidar, M. and Mouhoub, M. (2023). Nature-inspired al-
gorithms for solving weighted constraint satisfaction
problems. In Rocha, A. P., Steels, L., and van den
Herik, H. J., editors, Proceedings of the 15th Inter-
national Conference on Agents and Artificial Intel-
ligence, ICAART 2023, Volume 3, Lisbon, Portugal,
February 22-24, 2023, pages 63–72. SCITEPRESS.
Birattari, M., St
¨
utzle, T., Paquete, L., Varrentrapp, K., et al.
(2002). A racing algorithm for configuring meta-
heuristics. In Gecco, volume 2.
Burke, E., Cowling, P., De Causmaecker, P., and Berghe,
G. V. (2001). A memetic approach to the nurse roster-
ing problem. Applied intelligence, 15(3):199–214.
Camacho-Villal
´
on, C. L., Dorigo, M., and St
¨
utzle, T.
(2022). Exposing the grey wolf, moth-flame, whale,
firefly, bat, and antlion algorithms: six misleading op-
timization techniques inspired by bestial metaphors.
International Transactions in Operational Research.
Cheng, K. C. and Yap, R. H. (2010). An mdd-based gener-
alized arc consistency algorithm for positive and neg-
ative table constraints and some global constraints.
Constraints, 15(2):265–304.
Dechter, R. and Cohen, D. (2003). Constraint processing.
Morgan Kaufmann.
Gutjahr, W. J. and Rauner, M. S. (2007). An aco algo-
rithm for a dynamic regional nurse-scheduling prob-
lem in austria. Computers & Operations Research,
34(3):642–666.
Hmer, A. and Mouhoub, M. (2016). A multi-phase hybrid
metaheuristics approach for the exam timetabling. In-
ternational Journal of Computational Intelligence and
Applications, 15(04):1650023.
Jafari, H. and Salmasi, N. (2015). Maximizing the nurses’
preferences in nurse scheduling problem: mathemati-
cal modeling and a meta-heuristic algorithm. Journal
of industrial engineering international, 11(3):439–
458.
Jan, A., Yamamoto, M., and Ohuchi, A. (2000). Evolution-
ary algorithms for nurse scheduling problem. In Pro-
ceedings of the 2000 Congress on Evolutionary Com-
putation. CEC00 (Cat. No. 00TH8512), volume 1,
pages 196–203. IEEE.
Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-
mization. In Proceedings of ICNN’95-international
conference on neural networks, volume 4, pages
1942–1948. IEEE.
Korani, W. and Mouhoub, M. (2021). Review on nature-
inspired algorithms. In Operations research forum,
volume 2, pages 1–26. Springer.
Larrosa, J. (2002). Node and arc consistency in weighted
csp. In AAAI/IAAI, pages 48–53.
Lecoutre, C. and Szymanek, R. (2006). Generalized arc
consistency for positive table constraints. In Interna-
tional conference on principles and practice of con-
straint programming, pages 284–298. Springer.
Lee, J. H. and Leung, K. L. (2009). Towards effi-
cient consistency enforcement for global constraints
in weighted constraint satisfaction. In Twenty-First In-
ternational Joint Conference on Artificial Intelligence.
Mirjalili, S. and Lewis, A. (2016). The whale optimization
algorithm. Advances in engineering software, 95:51–
67.
Mouhoub, M. (2003). Dynamic path consistency for
interval-based temporal reasoning. In Applied Infor-
matics 2003, pages 393–398.
Nannen, V. and Eiben, A. E. (2007). Efficient relevance
estimation and value calibration of evolutionary algo-
rithm parameters. In 2007 IEEE congress on evolu-
tionary computation, pages 103–110. IEEE.
Rajeswari, M., Amudhavel, J., Pothula, S., and Dhavachel-
van, P. (2017). Directed bee colony optimization al-
gorithm to solve the nurse rostering problem. Compu-
tational intelligence and neuroscience, 2017.
Sadeghilalimi, M., Mouhoub, M., and Said, A. B. (2023).
Solving the nurse scheduling problem using the whale
optimization algorithm. In Dorronsoro, B., Chicano,
F., Danoy, G., and Talbi, E.-G., editors, Optimization
and Learning, pages 62–73, Cham. Springer Nature
Switzerland.
Ve
ˇ
cek, N., Mernik, M., Filipi
ˇ
c, B., and
ˇ
Crepin
ˇ
sek, M.
(2016). Parameter tuning with chess rating system
(crs-tuning) for meta-heuristic algorithms. Informa-
tion Sciences, 372:446–469.
Woeginger, G. J. (2003). Exact algorithms for np-hard
problems: A survey. In Combinatorial optimiza-
tion—eureka, you shrink!, pages 185–207. Springer.
Wu, J.-j., Lin, Y., Zhan, Z.-h., Chen, W.-n., Lin, Y.-b., and
Chen, J.-y. (2013). An ant colony optimization ap-
proach for nurse rostering problem. In 2013 IEEE
International Conference on Systems, Man, and Cy-
bernetics, pages 1672–1676. IEEE.
Yong, K. W. and Mouhoub, M. (2018). Using conflict and
support counts for variable and value ordering in csps.
Applied Intelligence, 48:2487–2500.
Zhang, Z., Hao, Z., and Huang, H. (2011). Hybrid swarm-
based optimization algorithm of ga & vns for nurse
scheduling problem. In International Conference on
Information Computing and Applications, pages 375–
382. Springer.
ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems
340