
ACKNOWLEDGEMENTS
This work has been partially supported by EU DUCA,
EU CyberSecPro, SYNAPSE, PTR 22-24 P2.01 (Cy-
bersecurity) and SERICS (PE00000014) under the
MUR National Recovery and Resilience Plan funded
by the EU - NextGenerationEU projects.
REFERENCES
Bacci, A., Bartoli, A., Martinelli, F., Medvet, E., and Mer-
caldo, F. (2018). Detection of obfuscation techniques
in android applications. In Proceedings of the 13th In-
ternational Conference on Availability, Reliability and
Security, pages 1–9.
Bhargava, N., Sharma, G., Bhargava, R., and Mathuria, M.
(2013). Decision tree analysis on j48 algorithm for
data mining. Proceedings of international journal of
advanced research in computer science and software
engineering, 3(6).
Canfora, G., Medvet, E., Mercaldo, F., and Visaggio, C. A.
(2014). Detection of malicious web pages using
system calls sequences. In Availability, Reliability,
and Security in Information Systems, pages 226–238.
Springer.
Canfora, G., Medvet, E., Mercaldo, F., and Visaggio, C. A.
(2015a). Detecting android malware using sequences
of system calls. In Proceedings of the 3rd Interna-
tional Workshop on Software Development Lifecycle
for Mobile, pages 13–20. ACM.
Canfora, G., Mercaldo, F., and Visaggio, C. A. (2013). A
classifier of malicious android applications. In Pro-
ceedings of the 2nd International Workshop on Secu-
rity of Mobile Applications, in conjunction with the In-
ternational Conference on Availability, Reliability and
Security.
Canfora, G., Mercaldo, F., and Visaggio, C. A. (2015b).
Evaluating op-code frequency histograms in malware
and third-party mobile applications. In E-Business
and Telecommunications, pages 201–222. Springer.
Canfora, G., Mercaldo, F., and Visaggio, C. A. (2015c).
Mobile malware detection using op-code frequency
histograms. In Proceedings of International Confer-
ence on Security and Cryptography (SECRYPT).
Cimitile, A., Martinelli, F., and Mercaldo, F. (2017). Ma-
chine learning meets ios malware: Identifying mali-
cious applications on apple environment. In ICISSP,
pages 487–492.
Fu, H., Cheng, J., Xu, Y., Wong, D. W. K., Liu, J., and Cao,
X. (2018). Joint optic disc and cup segmentation based
on multi-label deep network and polar transformation.
IEEE transactions on medical imaging, 37(7):1597–
1605.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2020). Generative adversarial networks. Com-
munications of the ACM, 63(11):139–144.
Huang, P., He, P., Tian, S., Ma, M., Feng, P., Xiao, H.,
Mercaldo, F., Santone, A., and Qin, J. (2022). A vit-
amc network with adaptive model fusion and multiob-
jective optimization for interpretable laryngeal tumor
grading from histopathological images. IEEE Trans-
actions on Medical Imaging, 42(1):15–28.
Huang, P., Tan, X., Zhou, X., Liu, S., Mercaldo, F., and
Santone, A. (2021). Fabnet: fusion attention block
and transfer learning for laryngeal cancer tumor grad-
ing in p63 ihc histopathology images. IEEE Journal
of Biomedical and Health Informatics, 26(4):1696–
1707.
Huang, P., Zhou, X., He, P., Feng, P., Tian, S., Sun, Y., Mer-
caldo, F., Santone, A., Qin, J., and Xiao, H. (2023).
Interpretable laryngeal tumor grading of histopatho-
logical images via depth domain adaptive network
with integration gradient cam and priori experience-
guided attention. Computers in Biology and Medicine,
154:106447.
Mercaldo, F., Nardone, V., Santone, A., and Visaggio, C. A.
(2016). Hey malware, i can find you! In Enabling
Technologies: Infrastructure for Collaborative Enter-
prises (WETICE), 2016 IEEE 25th International Con-
ference on, pages 261–262. IEEE.
Mercaldo, F. and Santone, A. (2020). Deep learning
for image-based mobile malware detection. Jour-
nal of Computer Virology and Hacking Techniques,
16(2):157–171.
Orlando, J. I., Barbosa Breda, J., Van Keer, K., Blaschko,
M. B., Blanco, P. J., and Bulant, C. A. (2018).
Towards a glaucoma risk index based on sim-
ulated hemodynamics from fundus images. In
Medical Image Computing and Computer Assisted
Intervention–MICCAI 2018: 21st International Con-
ference, Granada, Spain, September 16-20, 2018,
Proceedings, Part II 11, pages 65–73. Springer.
Radford, A., Metz, L., and Chintala, S. (2015). Unsu-
pervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434.
Vijayan, T., Sangeetha, M., Kumaravel, A., and Karthik,
B. (2023). Feature selection for simple color his-
togram filter based on retinal fundus images for di-
abetic retinopathy recognition. IETE Journal of Re-
search, 69(2):987–994.
Yang, J., Shi, R., and Ni, B. (2021). Medmnist classification
decathlon: A lightweight automl benchmark for med-
ical image analysis. In IEEE 18th International Sym-
posium on Biomedical Imaging (ISBI), pages 191–
195.
Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfis-
ter, H., and Ni, B. (2023). Medmnist v2-a large-scale
lightweight benchmark for 2d and 3d biomedical im-
age classification. Scientific Data, 10(1):41.
Zhou, X., Tang, C., Huang, P., Mercaldo, F., Santone, A.,
and Shao, Y. (2021). Lpcanet: classification of laryn-
geal cancer histopathological images using a cnn with
position attention and channel attention mechanisms.
Interdisciplinary Sciences: Computational Life Sci-
ences, 13(4):666–682.
BIOINFORMATICS 2024 - 15th International Conference on Bioinformatics Models, Methods and Algorithms
478