2020, Proceedings 10 (pp. 25-36). Springer Interna-
tional Publishing.
Cook, Bryan; Janamian, Saba; Lim, Teck; Logan, James;
Ulloa, Ivan; Altintas, Ilkay; Gupta, Amarnath (2021).
Using NLP to Predict the Severity of Cyber Secu-
rity Vulnerabilities. In Data Science & Engineering
Master of Advanced Study (DSE MAS) Capstone
Projects. UC San Diego Library Digital Collections.
https://doi.org/10.6075/J0TX3F89
Shahid, M. R., & Debar, H. (2021, December). Cvss-
bert: Explainable natural language processing to de-
termine the severity of a computer security vulnera-
bility from its description. In 2021 20th IEEE Interna-
tional Conference on Machine Learning and Applica-
tions (ICMLA) (pp. 1600-1607). IEEE.
Ohuabunwa, B. C. (2022). Predicting Cybersecurity Vul-
nerability Severity via Boosted Machine Learning En-
sembles and Feature Ranking (Doctoral dissertation,
The George Washington University).
Evangelista, J. F. (2021). Cybersecurity Vulnerability
Classification Utilizing Natural Language Processing
Methods (Doctoral dissertation, The George Washing-
ton University).
Das, S. S., Serra, E., Halappanavar, M., Pothen, A., & Al-
Shaer, E. (2021, October). V2w-bert: A framework
for effective hierarchical multiclass classification of
software vulnerabilities. In 2021 IEEE 8th Interna-
tional Conference on Data Science and Advanced An-
alytics (DSAA) (pp. 1-12). IEEE.
Neuhaus, S., & Zimmermann, T. (2010, November). Se-
curity trend analysis with cve topic models. In 2010
IEEE 21st International Symposium on Software Re-
liability Engineering (pp. 111-120). IEEE.
Yang, H., Park, S., Yim, K., & Lee, M. (2020). Better not to
use vulnerability’s reference for exploitability predic-
tion. Applied Sciences, 10(7), 2555.
Yin, J., Tang, M., Cao, J., & Wang, H. (2020). Apply trans-
fer learning to cybersecurity: Predicting exploitability
of vulnerabilities by description. Knowledge-Based
Systems, 210, 106529.
Bozorgi, M., Saul, L. K., Savage, S., & Voelker, G. M.
(2010, July). Beyond heuristics: learning to classify
vulnerabilities and predict exploits. In Proceedings of
the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 105-114).
Huff, P., McClanahan, K., Le, T., & Li, Q. (2021, August).
A recommender system for tracking vulnerabilities. In
Proceedings of the 16th International Conference on
Availability, Reliability and Security (pp. 1-7).
Jia, Y., Qi, Y., Shang, H., Jiang, R., & Li, A. (2018). A
practical approach to constructing a knowledge graph
for cybersecurity. Engineering, 4(1), 53-60.
Bridges, R. A., Jones, C. L., Iannacone, M. D., Testa,
K. M., & Goodall, J. R. (2013). Automatic labeling
for entity extraction in cyber security. arXiv preprint
arXiv:1308.4941.
Aghaei, E., Niu, X., Shadid, W., & Al-Shaer, E. (2022,
October). SecureBERT: A Domain-Specific Language
Model for Cybersecurity. In International Conference
on Security and Privacy in Communication Systems
(pp. 39-56). Cham: Springer Nature Switzerland.
Statnlp-Research. (n.d.). statnlp-
datasets/dataset/MalwareTextDB-1.0.zip at mas-
ter · statnlp-research/statnlp-datasets. GitHub.
https://github.com/statnlp-research/statnlp-
datasets/blob/master/dataset/MalwareTextDB-1.0.zip
Andrew Buttner, The MITRE Corporation Neal Zir-
ing, National Security Agency. (2008, January).
Common Platform Enumeration (CPE) – Specifi-
cation. https://cpe.mitre.org/specification/2.1/cpe-
specification 2.1.pdf
bert-base-cased · Hugging Face. (2023, June 1).
https://huggingface.co/bert-base-cased
distilroberta-base · Hugging Face. (n.d.).
https://huggingface.co/distilroberta-base
Cheryl. (2022, March 30). study notes: Handling Skewed
data for Machine Learning models. Medium.
https://reinec.medium.com/my-notes-handling-
skewed-data-5984de303725
Liang, X. (2021, December 10). What is XLNet and
why it outperforms BERT - Towards Data Sci-
ence. Medium. https://towardsdatascience.com/what-
is-xlnet-and-why-it-outperforms-bert-8d8fce710335
Nowak, M., Walkowski, M., & Sujecki, S. (2021, June).
Machine learning algorithms for conversion of CVSS
base score from 2.0 to 3. x. In International Confer-
ence on Computational Science (pp. 255-269). Cham:
Springer International Publishing.
Georgescu, T. M., Iancu, B., & Zurini, M. (2019). Named-
entity-recognition-based automated system for diag-
nosing cybersecurity situations in IoT networks. Sen-
sors, 19(15), 3380.
Dictionary.com — Meanings & Definitions of
English Words. (n.d.). In Dictionary.com.
https://www.dictionary.com/browse/before
ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy
78