
Chen, X., Shen, L., Sha, Z., Liu, R., Chen, S., Ji, G., and
Tan, C. (2019). A survey of multi-space techniques in
spatio-temporal simulation data visualization. Visual
Informatics, 3(3):129–139.
Dahshan, M., Polys, N. F., Jayne, R., and Pollyea, R. M.
(2020). Making sense of scientific simulation ensem-
bles with semantic interaction. In Computer Graphics
Forum, volume 39, pages 325–343. Wiley Online Li-
brary.
Dahshan, M. M. S. I. (2021). Visual analytics for high di-
mensional simulation ensembles.
Demir, I., Dick, C., and Westermann, R. (2014). Multi-
charts for comparative 3d ensemble visualization.
IEEE Transactions on Visualization and Computer
Graphics, 20(12):2694–2703.
Endert, A., Fiaux, P., and North, C. (2012). Semantic inter-
action for sensemaking: inferring analytical reasoning
for model steering. IEEE Transactions on Visualiza-
tion and Computer Graphics, 18(12):2879–2888.
Evers, M. and Linsen, L. (2022). Multi-dimensional
parameter-space partitioning of spatio-temporal sim-
ulation ensembles. Computers & Graphics, 104:140–
151.
Favelier, G., Faraj, N., Summa, B., and Tierny, J. (2018).
Persistence atlas for critical point variability in en-
sembles. IEEE transactions on visualization and com-
puter graphics, 25(1):1152–1162.
Fofonov, A. and Linsen, L. (2018). Multivisa: Visual anal-
ysis of multi-run physical simulation data using inter-
active aggregated plots. In VISIGRAPP (3: IVAPP),
pages 62–73.
Fofonov, A. and Linsen, L. (2019). Projected field similar-
ity for comparative visualization of multi-run multi-
field time-varying spatial data. In Computer Graphics
Forum, volume 38, pages 286–299. Wiley Online Li-
brary.
Gierzynski, A. O. and Pollyea, R. M. (2017). Three-phase
co2 flow in a basalt fracture network. Water Resources
Research, 53(11):8980–8998.
Huang, Q., Chen, Q., Liu, G., and Cui, Z. (2023). Visual-
ization facilitates uncertainty evaluation of multiple-
point geostatistical stochastic simulation. Visual In-
telligence, 1(1):12.
Huesmann, K. and Linsen, L. (2022). Similaritynet: A deep
neural network for similarity analysis within spatio-
temporal ensembles. In Computer Graphics Forum,
volume 41, pages 379–389. Wiley Online Library.
Kaufman, C. G., Schervish, M. J., and Nychka, D. W.
(2008). Covariance tapering for likelihood-based esti-
mation in large spatial data sets. Journal of the Amer-
ican Statistical Association, 103(484):1545–1555.
Kumpf, A., Stumpfegger, J., Hartl, P. F., and Westermann,
R. (2021). Visual analysis of multi-parameter distri-
butions across ensembles of 3d fields. IEEE Transac-
tions on Visualization and Computer Graphics.
L
´
azaro-Gredilla, M., Quinonero-Candela, J., Rasmussen,
C. E., and Figueiras-Vidal, A. R. (2010). Sparse spec-
trum gaussian process regression. The Journal of Ma-
chine Learning Research, 11:1865–1881.
Li, W., Duan, Q., Miao, C., Ye, A., Gong, W., and Di, Z.
(2017). A review on statistical postprocessing meth-
ods for hydrometeorological ensemble forecasting.
Wiley Interdisciplinary Reviews: Water, 4(6):e1246.
Liu, L., Padilla, L., Creem-Regehr, S. H., and House, D. H.
(2018). Visualizing uncertain tropical cyclone predic-
tions using representative samples from ensembles of
forecast tracks. IEEE transactions on visualization
and computer graphics, 25(1):882–891.
Miller, H. J. (2004). Tobler’s first law and spatial analysis.
Annals of the Association of American Geographers,
94(2):284–289.
Mirzargar, M., Whitaker, R. T., and Kirby, R. M. (2014).
Curve boxplot: Generalization of boxplot for ensem-
bles of curves. IEEE transactions on visualization and
computer graphics, 20(12):2654–2663.
Nychka, D., Wikle, C., and Royle, J. A. (2002). Multires-
olution models for nonstationary spatial covariance
functions. Statistical Modelling, 2(4):315–331.
Orban, D., Keefe, D. F., Biswas, A., Ahrens, J., and Rogers,
D. (2018). Drag and track: A direct manipulation in-
terface for contextualizing data instances within a con-
tinuous parameter space. IEEE transactions on visu-
alization and computer graphics, 25(1):256–266.
Potter, K., Wilson, A., Bremer, P.-T., Williams, D., Dou-
triaux, C., Pascucci, V., and Johnson, C. R. (2009).
Ensemble-vis: A framework for the statistical visual-
ization of ensemble data. In 2009 IEEE International
Conference on Data Mining Workshops, pages 233–
240. IEEE.
Risser, M. D. and Calder, C. A. (2015). Local likelihood
estimation for covariance functions with spatially-
varying parameters: the convospat package for r.
arXiv preprint arXiv:1507.08613.
Shi, N., Xu, J., Li, H., Guo, H., Woodring, J., and Shen, H.-
W. (2022). Vdl-surrogate: A view-dependent latent-
based model for parameter space exploration of en-
semble simulations. IEEE Transactions on Visualiza-
tion and Computer Graphics, 29(1):820–830.
Shu, Q., Guo, H., Liang, J., Che, L., Liu, J., and Yuan, X.
(2016). Ensemblegraph: Interactive visual analysis of
spatiotemporal behaviors in ensemble simulation data.
In 2016 IEEE Pacific Visualization Symposium (Paci-
ficVis), pages 56–63. IEEE.
Vietinghoff, D., Bottinqer, M., Scheuermann, G., and
Heine, C. (2022). Visualizing confidence intervals
for critical point probabilities in 2d scalar field ensem-
bles. In 2022 IEEE Visualization and Visual Analytics
(VIS), pages 145–149. IEEE.
Wackernagel, H. (2013). Multivariate geostatistics: an
introduction with applications. Springer Science &
Business Media.
Wang, J., Hazarika, S., Li, C., and Shen, H.-W. (2018). Vi-
sualization and visual analysis of ensemble data: A
survey. IEEE transactions on visualization and com-
puter graphics, 25(9):2853–2872.
Wang, J., Liu, X., Shen, H.-W., and Lin, G. (2016). Multi-
resolution climate ensemble parameter analysis with
nested parallel coordinates plots. IEEE transactions
on visualization and computer graphics, 23(1):81–90.
Winsberg, E. (2013). Computer simulations in science.
Zhang, M., Chen, L., Li, Q., Yuan, X., and Yong, J. (2020).
Uncertainty-oriented ensemble data visualization and
exploration using variable spatial spreading. IEEE
Transactions on Visualization and Computer Graph-
ics, 27(2):1808–1818.
Human-Machine Collaboration for the Visual Exploration and Analysis of High-Dimensional Spatial Simulation Ensembles
689