Cai, Z., Xu, D., Zhang, Q., Zhang, J., Ngai, S.-M., & Shao,
J. (2015). Classification of lung cancer using ensemble-
based feature selection and machine learning methods.
Molecular BioSystems, 11(3), 791-800.
Chen, S., Han, Y., Lin, J., Zhao, X., & Kong, P. (2020).
Pulmonary nodule detection on chest radiographs using
balanced convolutional neural network and classic
candidate detection. Artificial Intelligence in Medicine,
107, 101881.
Chen, Y., Feng, J., Liu, J., Pang, B., Cao, D., & Li, C.
(2022). Detection and classification of lung cancer cells
using swin transformer. Journal of Cancer Therapy,
13(7), 464-475.
Dalal, N., & Triggs, B. (2005). Histograms of oriented
gradients for human detection. Paper presented at the
2005 IEEE computer society conference on computer
vision and pattern recognition (CVPR'05).
DENG, Z., & CHEN, X. (2019). Pulmonary nodule
detection algorithm based on deep convolutional neural
network. Journal of Computer Applications, 39(7),
2109.
El-Baz, A., Elnakib, A., El-Ghar, A., Gimel'farb, G., Falk,
R., & Farag, A. (2013). Automatic detection of 2d and
3d lung nodules in chest spiral ct scans. International
journal of biomedical imaging, 2013.
Fakoor, R., Ladhak, F., Nazi, A., & Huber, M. (2013).
Using deep learning to enhance cancer diagnosis and
classification. Paper presented at the Proceedings of the
international conference on machine learning.
Fang Lei, B. (2019). Barriers to lung cancer screening with
low-dose computed tomography. Paper presented at the
Oncology nursing forum.
Fedewa, S.A., Kazerooni, E.A., Studts, J.L., Smith, R.A.,
Bandi, P., Sauer, A.G., . . . Silvestri, G.A. (2021). State
variation in low-dose computed tomography scanning
for lung cancer screening in the united states. JNCI:
Journal of the National Cancer Institute, 113(8), 1044-
1052.
Greenspan, H., Van Ginneken, B., & Summers, R.M.
(2016). Guest editorial deep learning in medical
imaging: Overview and future promise of an exciting
new technique. IEEE transactions on medical imaging,
35(5), 1153-1159.
Guo, Y., Feng, Y., Sun, J., Zhang, N., Lin, W., Sa, Y., &
Wang, P. (2014). Automatic lung tumor segmentation
on pet/ct images using fuzzy markov random field
model. Computational and mathematical methods in
medicine, 2014.
Gupta, B., & Tiwari, S. (2014). Lung cancer detection using
curvelet transform and neural network. International
Journal of Computer Applications, 86(1).
Gurcan, M.N., Sahiner, B., Petrick, N., Chan, H.P.,
Kazerooni, E.A., Cascade, P.N., & Hadjiiski, L. (2002).
Lung nodule detection on thoracic computed
tomography images: Preliminary evaluation of a
computer‐aided diagnosis system. Medical Physics,
29(11), 2552-2558.
Hamedianfar, A., Mohamedou, C., Kangas, A., &
Vauhkonen, J. (2022). Deep learning for forest
inventory and planning: A critical review on the remote
sensing approaches so far and prospects for further
applications. Forestry, 95(4), 451-465.
Han, G., Liu, X., Zhang, H., Zheng, G., Soomro, N.Q.,
Wang, M., & Liu, W. (2019). Hybrid resampling and
multi-feature fusion for automatic recognition of cavity
imaging sign in lung ct. Future Generation Computer
Systems, 99, 558-570.
Highamcatherine, F., & Highamdesmond, J. (2019). Deep
learning. SIAM Rev, 32, 860-891.
Jonas, D.E., Reuland, D.S., Reddy, S.M., Nagle, M., Clark,
S.D., Weber, R.P., . . . Armstrong, C. (2021). Screening
for lung cancer with low-dose computed tomography:
Updated evidence report and systematic review for the
us preventive services task force. Jama, 325(10), 971-
987.
Kaggle. KDSB (2017). Data Science Bowl 2017 lung
Cancer Detection (dsb3).
Kuruvilla, J., & Gunavathi, K. (2014). Lung cancer
classification using neural networks for ct images.
Computer methods and programs in biomedicine,
113(1), 202-209.
Liang, H., Hu, M., Ma, Y., Yang, L., Chen, J., Lou, L., . . .
Xiao, Y. (2023). Performance of deep-learning
solutions on lung nodule malignancy classification: A
systematic review. Life, 13(9), 1911.
Ma, L., Wan, C., Hao, K., Cai, A., & Liu, L. (2023). A novel
fusion algorithm for benign-malignant lung nodule
classification on ct images. BMC Pulmonary Medicine,
23(1), 474.
Mandal, M., & Vipparthi, S.K. (2021). An empirical review
of deep learning frameworks for change detection:
Model design, experimental frameworks, challenges
and research needs. IEEE Transactions on Intelligent
Transportation Systems, 23(7), 6101-6122.
Masud, M., Muhammad, G., Hossain, M.S., Alhumyani, H.,
Alshamrani, S.S., Cheikhrouhou, O., & Ibrahim, S.
(2020). Light deep model for pulmonary nodule
detection from ct scan images for mobile devices.
Wireless Communications and Mobile Computing,
2020, 1-8.
Nazir, I., AlQahtani, S.A., Jadoon, M.M., & Dahshan, M.
(2023). Machine learning-based lung cancer detection
using multiview image registration and fusion. Journal
of Sensors, 2023.
Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A
comparative study of texture measures with
classification based on featured distributions. Pattern
recognition, 29(1), 51-59.
Penedo, M.G., Carreira, M.J., Mosquera, A., & Cabello, D.
(1998). Computer-aided diagnosis: A neural-network-
based approach to lung nodule detection. IEEE
Transactions on Medical Imaging, 17(6), 872-880.
Rao, P., Pereira, N.A., & Srinivasan, R. (2016).
Convolutional neural networks for lung cancer
screening in computed tomography (ct) scans. Paper
presented at the 2016 2nd international conference on
contemporary computing and informatics (IC3I).
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net:
Convolutional networks for biomedical image
segmentation. Paper presented at the Medical Image