
tection in cultural sites using synthetic data. Pattern
Recognition Letters, 133:17–24.
Borkman, S., Crespi, A., Dhakad, S., Ganguly, S., Hogins,
J., Jhang, Y.-C., Kamalzadeh, M., Li, B., Leal, S.,
Parisi, P., Romero, C., Smith, W., Thaman, A., War-
ren, S., and Yadav, N. (2021). Unity perception: Gen-
erate synthetic data for computer vision.
Chen, L.-H., Wu, E. H.-K., Jin, M.-H., and Chen, G.-H.
(2014). Intelligent fusion of wi-fi and inertial sensor-
based positioning systems for indoor pedestrian navi-
gation. IEEE Sensors Journal, 14:4034–4042.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 248–255.
DeTone, D., Malisiewicz, T., and Rabinovich, A. (2018).
Superpoint: Self-supervised interest point detection
and description.
Dong, J., Noreikis, M., Xiao, Y., and Yl
¨
a-J
¨
a
¨
aski, A. (2019).
Vinav: A vision-based indoor navigation system for
smartphones. IEEE Transactions on Mobile Comput-
ing, 18(6):1461–1475.
Ebadi, S. E., Jhang, Y.-C., Zook, A., Dhakad, S., Crespi, A.,
Parisi, P., Borkman, S., Hogins, J., and Ganguly, S.
(2022). Peoplesanspeople: A synthetic data generator
for human-centric computer vision.
Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., and
Greenspan, H. (2018). Synthetic data augmentation
using gan for improved liver lesion classification. In
2018 IEEE 15th International Symposium on Biomed-
ical Imaging (ISBI 2018), pages 289–293.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep resid-
ual learning for image recognition.
Huang, X., Mei, G., Zhang, J., and Abbas, R. (2021). A
comprehensive survey on point cloud registration.
Ishihara, T., Vongkulbhisal, J., Kitani, K. M., and Asakawa,
C. (2017). Beacon-guided structure from motion for
smartphone-based navigation. In 2017 IEEE Win-
ter Conference on Applications of Computer Vision
(WACV), pages 769–777.
Jeon, K. E., She, J., Soonsawad, P., and Ng, P. C. (2018).
Ble beacons for internet of things applications: Sur-
vey, challenges, and opportunities. IEEE Internet of
Things Journal, 5(2):811–828.
Kunhoth, J., Karkar, A., Al-Maadeed, S. A., and Al-Ali,
A. K. (2020). Indoor positioning and wayfinding sys-
tems: a survey. Human-centric Computing and Infor-
mation Sciences, 10:1–41.
Lee, T., Lee, B.-U., Shin, I., Choe, J., Shin, U., Kweon, I. S.,
and Yoon, K.-J. (2022). Uda-cope: Unsupervised do-
main adaptation for category-level object pose estima-
tion.
Leonardi, R., Ragusa, F., Furnari, A., and Farinella, G. M.
(2022). Egocentric human-object interaction detection
exploiting synthetic data.
Manlises, C., Yumang, A. N., Marcelo, M. W., Adriano, A.,
and Reyes, J. (2016). Indoor navigation system based
on computer vision using camshift and d* algorithm
for visually impaired. 2016 6th IEEE International
Conference on Control System, Computing and Engi-
neering (ICCSCE), pages 481–484.
Middelberg, S., Sattler, T., Untzelmann, O., and Kobbelt,
L. (2014). Scalable 6-dof localization on mobile de-
vices. In Computer Vision–ECCV 2014: 13th Euro-
pean Conference, Zurich, Switzerland, September 6-
12, 2014, Proceedings, Part II 13, pages 268–283.
Springer.
Mikhaylov, K., Tikanm
¨
aki, A., Pet
¨
aj
¨
aj
¨
arvi, J., H
¨
am
¨
al
¨
ainen,
M., and Kohno, R. (2016). On the selection of proto-
col and parameters for uwb-based wireless indoors lo-
calization. In 2016 10th International Symposium on
Medical Information and Communication Technology
(ISMICT), pages 1–5. IEEE.
Orlando, S., Furnari, A., Battiato, S., and Farinella, G.
(2019). Image based localization with simulated ego-
centric navigations. pages 305–312.
Quattrocchi, C., Di Mauro, D., Furnari, A., and Farinella,
G. M. (2022). Panoptic segmentation in industrial en-
vironments using synthetic and real data. In Sclaroff,
S., Distante, C., Leo, M., Farinella, G. M., and
Tombari, F., editors, Image Analysis and Processing
– ICIAP 2022, pages 275–286, Cham. Springer Inter-
national Publishing.
Saleh, F. S., Aliakbarian, M. S., Salzmann, M., Peters-
son, L., and Alvarez, J. M. (2018). Effective use of
synthetic data for urban scene semantic segmentation.
In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 84–100.
Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S. N., and
Chellappa, R. (2018). Learning from synthetic data:
Addressing domain shift for semantic segmentation.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3752–3761.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2019). Grad-CAM: Visual
explanations from deep networks via gradient-based
localization. International Journal of Computer Vi-
sion, 128(2):336–359.
Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and
Abbeel, P. (2017). Domain randomization for transfer-
ring deep neural networks from simulation to the real
world. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 23–30.
Wu, Y., Yuan, Y., and Wang, Q. (2022). Learning from
synthetic data for crowd instance segmentation in the
wild. In 2022 IEEE International Conference on Im-
age Processing (ICIP), pages 2391–2395.
Zhang, R., Li, Y., Yan, Y., Zhang, H., Wu, S., Yu, T., and
Gu, Z. (2016). Control of a wheelchair in an indoor
environment based on a brain–computer interface and
automated navigation. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 24:128–139.
Zheng, Y., Shen, G., Li, L., Zhao, C., Li, M., and Zhao,
F. (2014). Travi-navi: Self-deployable indoor naviga-
tion system. IEEE/ACM Transactions on Networking,
25:2655–2669.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
332