
literature reviews. Intelligent Systems with Applica-
tions, 18:200193.
La Quatra, M., Cagliero, L., and Baralis, E. (2021). Lever-
aging full-text article exploration for citation analysis.
Scientometrics, 126(10):8275–8293.
Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. (2023). Pre-train, prompt, and predict: A system-
atic survey of prompting methods in natural language
processing. ACM Comput. Surv., 55(9).
Lo, K., Wang, L. L., Neumann, M., Kinney, R., and Weld,
D. (2020). S2ORC: The semantic scholar open re-
search corpus. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4969–4983, Online. Association for
Computational Linguistics.
Miah, M. S. U., Sulaiman, J., Sarwar, T. B., Naseer, A.,
Ashraf, F., Zamli, K. Z., and Jose, R. (2022). Sentence
boundary extraction from scientific literature of elec-
tric double layer capacitor domain: Tools and tech-
niques. Applied Sciences, 12(3).
Noroozi, M., Moghaddam, H. R., Shah, A., Charkhgard,
H., Sarkar, S., Das, T. K., and Pohland, T. (2023). An
ai-assisted systematic literature review of the impact
of vehicle automation on energy consumption. IEEE
Transactions on Intelligent Vehicles, pages 1–22.
Okoli, C. (2015). A guide to conducting a standalone sys-
tematic literature review. Commun. Assoc. Inf. Syst.,
37:43.
Olorisade, B. K., Brereton, P., and Andras, P. (2019). The
use of bibliography enriched features for automatic ci-
tation screening. Journal of Biomedical Informatics,
94:103202.
Omran, F. N. A. A. and Treude, C. (2017). Choosing an
nlp library for analyzing software documentation: A
systematic literature review and a series of experi-
ments. In Proceedings of the 14th International Con-
ference on Mining Software Repositories, MSR ’17,
page 187–197. IEEE Press.
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P. F.,
Leike, J., and Lowe, R. (2022). Training language
models to follow instructions with human feedback.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Infor-
mation Processing Systems, volume 35, pages 27730–
27744. Curran Associates, Inc.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron,
I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L.,
Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou,
R., Glanville, J., Grimshaw, J. M., Hr
´
objartsson, A.,
Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E.,
McDonald, S., McGuinness, L. A., Stewart, L. A.,
Thomas, J., Tricco, A. C., Welch, V. A., Whiting,
P., and Moher, D. (2021). The prisma 2020 state-
ment: An updated guideline for reporting systematic
reviews. Journal of Clinical Epidemiology, 134:178–
189.
Penning de Vries, B. B., van Smeden, M., Rosendaal, F. R.,
and Groenwold, R. H. (2020). Title, abstract, and key-
word searching resulted in poor recovery of articles in
systematic reviews of epidemiologic practice. Journal
of Clinical Epidemiology, 121:55–61.
Portenoy, J. and West, J. D. (2020). Constructing and eval-
uating automated literature review systems. Sciento-
metrics, 125(3):3233–3251.
Rowe, F. (2014). What literature review is not: diversity,
boundaries and recommendations. European Journal
of Information Systems, 23(3):241–255.
Snyder, H. (2019). Literature review as a research method-
ology: An overview and guidelines. Journal of Busi-
ness Research, 104:333–339.
Tauchert, C., Bender, M., Mesbah, N., and Buxmann, P.
(2020). Towards an integrative approach for auto-
mated literature reviews using machine learning. In
Hawaii International Conference on System Sciences.
Templier, M. and Par
´
e, G. (2015). A framework for guiding
and evaluating literature reviews. Commun. Assoc. Inf.
Syst., 37:6.
van Dinter, R., Tekinerdogan, B., and Catal, C. (2021). Au-
tomation of systematic literature reviews: A system-
atic literature review. Information and Software Tech-
nology, 136:106589.
Wang, Z., Nayfeh, T., Tetzlaff, J., O’Blenis, P., and Murad,
M. H. (2020). Error rates of human reviewers during
abstract screening in systematic reviews. PLOS ONE,
15(1):1–8.
Webster, J. and Watson, R. T. (2002). Analyzing the past
to prepare for the future: Writing a literature review.
MIS Quarterly, 26(2):xiii–xxiii.
Wilson, E., Cruz, F., Maclean, D., Ghanawi, J., McCann,
S. K., Brennan, P. M., Liao, J., Sena, E. S., and
Macleod, M. (2023). Screening for in vitro system-
atic reviews: a comparison of screening methods and
training of a machine learning classifier. Clinical Sci-
ence, 137(2):181–193.
Wu, T., Terry, M., and Cai, C. J. (2022). Ai chains: Trans-
parent and controllable human-ai interaction by chain-
ing large language model prompts. In Proceedings of
the 2022 CHI Conference on Human Factors in Com-
puting Systems, CHI ’22, New York, NY, USA. Asso-
ciation for Computing Machinery.
Yu, W., Iter, D., Wang, S., Xu, Y., Ju, M., Sanyal, S., Zhu,
C., Zeng, M., and Jiang, M. (2023). Generate rather
than retrieve: Large language models are strong con-
text generators. In The Eleventh International Confer-
ence on Learning Representations.
APPENDIX
In this appendix, we list some implementation details
of ALISE.
Libraries
• Langchain (https://python.langchain.com)
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
460