
droid malware detection based on linux kernel system
call graphs. In 2016 IEEE/WIC/ACM International
Conference on Web Intelligence Workshops (WIW),
pages 104–111. IEEE.
Iqbal, S. and Zulkernine, M. (2018). Spydroid: A frame-
work for employing multiple real-time malware de-
tectors on android. In 2018 13th International Con-
ference on Malicious and Unwanted Software (MAL-
WARE), pages 1–8. IEEE.
Kapersky (2023). Android mobile security threats. https://
www.kaspersky.com/resource-center/threats/mobile.
Accessed: July 2023.
Kovacs, ByEduard (2023). New samsung message guard
protects mobile devices against zero- click exploits.
https://www.securityweek.com/new-samsung-messa
ge-guard-protects-mobile-devices-against-zero-click
-exploits/. Accessed: July 2023.
Liu, Y., Tantithamthavorn, C., Li, L., and Liu, Y. (2022a).
Deep learning for android malware defenses: a sys-
tematic literature review. ACM Computing Surveys,
55(8):1–36.
Liu, Y., Tantithamthavorn, C., Li, L., and Liu, Y. (2022b).
Explainable ai for android malware detection: To-
wards understanding why the models perform so well?
In 2022 IEEE 33rd International Symposium on Soft-
ware Reliability Engineering (ISSRE), pages 169–
180. IEEE.
Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi,
D., and Ghorbani, A. A. (2020). Dynamic an-
droid malware category classification using semi-
supervised deep learning. In 2020 IEEE Intl Conf
on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing,
Intl Conf on Cloud and Big Data Computing, Intl
Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pages 515–
522. IEEE.
Miranda, T. C., Gimenez, P.-F., Lalande, J.-F., Tong, V.
V. T., and Wilke, P. (2022). Debiasing android mal-
ware datasets: How can i trust your results if your
dataset is biased? IEEE Transactions on Information
Forensics and Security, 17:2182–2197.
monkey (2023). https://developer.android.com/studio/test/
other-testing-tools/monkey. Accessed: July 2023.
Nisi, D., Bianchi, A., and Fratantonio, Y. (2019). Exploring
{Syscall-Based} semantics reconstruction of android
applications. In 22nd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID
2019), pages 517–531.
Pan, Y., Ge, X., Fang, C., and Fan, Y. (2020). A systematic
literature review of android malware detection using
static analysis. IEEE Access, 8:116363–116379.
Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., and
Cavallaro, L. (2019). {TESSERACT}: Eliminat-
ing experimental bias in malware classification across
space and time. In 28th USENIX Security Symposium
(USENIX Security 19), pages 729–746.
Razgallah, A. and Khoury, R. (2021). Behavioral classifi-
cation of android applications using system calls. In
2021 28th Asia-Pacific Software Engineering Confer-
ence (APSEC), pages 43–52. IEEE.
Razgallah, A., Khoury, R., Hall
´
e, S., and Khanmohammadi,
K. (2021). A survey of malware detection in android
apps: Recommendations and perspectives for future
research. Computer Science Review, 39:100358.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why
should I trust you?”: Explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August
13-17, 2016, pages 1135–1144.
Romdhana, A., Merlo, A., Ceccato, M., and Tonella,
P. (2022). Deep reinforcement learning for black-
box testing of android apps. ACM Transactions on
Software Engineering and Methodology (TOSEM),
31(4):1–29.
Saneeha Khalid, F. B. H. (2022). Evaluating dynamic anal-
ysis features for android malware categorization. In
Proceedings of the International Wireless Communi-
cations and Mobile Computin (IWCMC).
scikit-learn (2023). https://scikit-learn.org/stable/. Ac-
cessed: Oct 2023.
Statista (2023). Global mobile os market share 2023. https:
//www.statista.com/statistics/272698/global-market-s
hare-held-by-mobile-operating-systems-since-2009/.
Accessed: July 2023.
strace (2023). https://man7.org/linux/man-pages/man1/stra
ce.1.html. Accessed: July 2023.
syscalls(2)–Linux manual page (2023). https://man7.org
/linux/man-pages/man2/syscalls.2.html. Accessed:
Nov 2023.
Tam, K., Khan, S. J., Fattori, A., and Cavallaro, L. (2015).
Copperdroid: Automatic reconstruction of android
malware behaviors. In Ndss, pages 1–15.
VirusShare (2023). https://virusshare.com/. Accessed: Nov
2023.
VirusTotal (2023). Virustotal - home. https://www.virustot
al.com/gui/home/upload. Accessed: August 2023.
Visani, G., Bagli, E., Chesani, F., Poluzzi, A., and Ca-
puzzo, D. (2022). Statistical stability indices for lime:
Obtaining reliable explanations for machine learning
models. Journal of the Operational Research Society,
73(1):91–101.
Wu, B., Chen, S., Gao, C., Fan, L., Liu, Y., Wen, W., and
Lyu, M. R. (2021). Why an android app is classified
as malware: Toward malware classification interpreta-
tion. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(2):1–29.
Yan, P. and Yan, Z. (2018). A survey on dynamic mo-
bile malware detection. Software Quality Journal,
26(3):891–919.
Zhang, X., Mathur, A., Zhao, L., Rahmat, S., Niyaz, Q.,
Javaid, A., and Yang, X. (2022). An early detection
of android malware using system calls based machine
learning model. In Proceedings of the 17th Interna-
tional Conference on Availability, Reliability and Se-
curity, pages 1–9.
ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy
202