initial values, and as a result, the computational cost
is about 1/100 of the original cost.
The results also suggest that the regulatory
structure of the network is dominant with respect to
the bistability compared to the parameter values. This
indicates that, when searching for regulatory
networks with bistability, it may be effective, for
example, to fix all parameter values to 1 and search
for variations in structure only.
By the way, the enzymatic reaction networks
analyzed here were cyclic reaction systems as nodes.
The MAPK cascade, a typical signal transduction
system, includes the process of double
phosphorylation. To extend the mathematical model
of this study to include the process of double
phosphorylation in the analysis, the set of differential
equations derived from a single node can be modified.
In the future, we intend to extend it as such and apply
it to a more realistic analysis of bistability in
intracellular signaling systems.
REFERENCES
Adler, M., Szekely, P., Mayo, A., & Alon, U. (2017).
Optimal Regulatory Circuit Topologies for Fold-
Change Detection. Cell Syst, 4(2), 171-181 e178.
https://doi.org/S2405-4712(16)30419-7 [pii],
10.1016/j.cels.2016.12.009
Brightman, F. A., & Fell, D. A. (2000). Differential
feedback regulation of the MAPK cascade underlies the
quantitative differences in EGF and NGF signalling in
PC12 cells. FEBS Letters, 482, 169-174.
Doncic, A., Atay, O., Valk, E., Grande, A., Bush, A.,
Vasen, G., Colman-Lerner, A., Loog, M., & Skotheim,
J. M. (2015). Compartmentalization of a bistable switch
enables memory to cross a feedback-driven transition.
Cell, 160(6), 1182-1195. https://doi.org/10.1016/
j.cell.2015.02.032, S0092-8674(15)00198-1 [pii]
Ferrell, J. E., Jr. (1998). How regulated protein
translocation can produce switch-like responses.
Trends in Biochemical Science, 23, 461-465.
Gedeon, T., Cummins, B., Harker, S., & Mischaikow, K.
(2018). Identifying robust hysteresis in networks. PLoS
Comput Biol, 14(4), e1006121. https://doi.org/10.1371/
journal.pcbi.1006121 PCOMPBIOL-D-17-01583 [pii]
Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T.,
Yumoto, N., Ichikawa, M., Kim, J. H., Saito, K., Saeki,
M., Shirouzu, M., Yokoyama, S., & Konagaya, A.
(2003). A computational model on the modulation of
mitogen-activated protein kinase (MAPK) and Akt
pathways in heregulin-induced ErbB signalling.
Biochemical Journal, 373(Pt 2), 451-463.
Huang, C. F., & Ferrell, J. E., Jr. (1996). Ultrasensitivity in
the mitogen-activated protein kinase cascade.
Proceedings of the National Academy of Science of the
United States of America, 93, 10078-10083.
Jeschke, M., Baumgartner, S., & Legewie, S. (2013).
Determinants of cell-to-cell variability in protein kinase
signaling. PLoS Comput Biol, 9(12), e1003357.
https://doi.org/10.1371/journal.pcbi.1003357
PCOMPBIOL-D-13-00825 [pii]
Kholodenko, B. N. (2006). Cell-signalling dynamics in
time and space. Nat Rev Mol Cell Biol, 7(3), 165-176.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=
Retrieve&db=PubMed&dopt=Citation&list_uids=164
82094
Kim, J. K., & Tyson, J. J. (2020). Misuse of the Michaelis-
Menten rate law for protein interaction networks and its
remedy. PLoS Comput Biol, 16(10), e1008258.
https://doi.org/10.1371/journal.pc bi.1008258
Kuwahara, H., & Gao, X. (2013). Stochastic effects as a
force to increase the complexity of signaling networks.
Sci Rep, 3, 2297. https://doi.org/10.1038/srep02297
srep02297 [pii]
Levchenko, A., Bruck, J., & Sternberg, P. W. (2000).
Scaffold proteins may biphasically affect the levels of
mitogen-activated protein kinase signaling and reduce
its threshold properties. Proceedings of the National
Academy of Science of the United States of America,
97(11), 5818-5823.
Ma, W., Trusina, A., El-Samad, H., Lim, W. A., & Tang,
C. (2009). Defining network topologies that can
achieve biochemical adaptation. Cell, 138(4),
760-773. https://doi.org/10.1016/j.cell.2009.06.013
S0092-8674(09)00712-0 [pii]
Mai, Z., & Liu, H. (2013). Random parameter sampling of
a generic three-tier MAPK cascade model reveals major
factors affecting its versatile dynamics. PLoS One, 8(1),
e54441. https://doi.org/10.1371/journal.pone.0054441
PONE-D-12-24261 [pii]
Naka, T. (2020). Validity of the Michaelis-Menten
Approximation for the Stability Analysis in Regulatory
Reaction Networks. BIOSTEC 2020 (13th International
Joint Conference on Biomedical Engineering Systems
and Technologies), Valletta, Malta.
Naka, T. (2022). The partition representation of enzymatic
reaction networks and its application for searching bi-
stable reaction systems. PLoS One, 17(1), e0263111.
https://doi.org/10.1371/journal.pone.0263111
Qiao, L., Nachbar, R. B., Kevrekidis, I. G., & Shvartsman,
S. Y. (2007). Bistability and oscillations in the Huang-
Ferrell model of MAPK signaling. PLoS Comput Biol,
3(9), 1819-1826. https://doi.org/07-PLCB-RA-0294
[pii] 10.1371/journal.pcbi.0030184
Ramakrishnan, N., & Bhalla, U. S. (2008). Memory
switches in chemical reaction space. PLoS Comput
Biol, 4(7), e1000122. https://doi.org/10.1371/
journal.pcbi.1000122
Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D., & Muller,
G. (2002). Computational modeling of the dynamics of
the MAP kinase cascade activated by surface and
internalized EGF receptors. Nature Biotechnology, 20,
370-375.
Shah, N. A., & Sarkar, C. A. (2011). Robust network
topologies for generating switch-like cellular
responses. PLoS Comput Biol, 7(6), e1002085.
Identification of Bistability in Enzymatic Reaction Networks Using Hysteresis Response