Gao, X., Liu, X., Yang, T., Deng, G., Peng, H., Zhang, Q.,
Li, H., and Liu, J. (2020). Automatic key moment ex-
traction and highlights generation based on compre-
hensive soccer video understanding. In 2020 IEEE
International Conference on Multimedia Expo Work-
shops (ICMEW), pages 1–6.
Giancola, S., Amine, M., Dghaily, T., and Ghanem, B.
(2018). Soccernet: A scalable dataset for action spot-
ting in soccer videos. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 1792–1810.
Guo, T., Tao, K., Hu, Q., and Shen, Y. (2020). Detection
of ice hockey players and teams via a two-phase cas-
caded cnn model. IEEE Access, 8:195062–195073.
He, X. (2022). Application of deep learning in video
target tracking of soccer players. Soft Computing,
26(20):10971–10979.
Homayounfar, N., Fidler, S., and Urtasun, R. (2017). Sports
field localization via deep structured models. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4012–4020.
Johnson, S. and Everingham, M. (2010). Clustered pose
and nonlinear appearance models for human pose es-
timation. In Proc. BMVC, pages 12.1–11.
Kamble, P., Keskar, A., and Bhurchandi, K. (2019). A deep
learning ball tracking system in soccer videos. Opto-
Electronics Review, 27(1):58–69.
Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C.,
Vijayanarasimhan, S., Viola, F., Green, T., Back, T.,
Natsev, P., Suleyman, M., and Zisserman, A. (2017).
The Kinetics Human Action Video Dataset. CoRR.
Lee, J., Moon, S., Nam, D.-W., Lee, J., Oh, A. R., and Yoo,
W. (2020). A study on sports player tracking based
on video using deep learning. In 2020 International
Conference on Information and Communication Tech-
nology Convergence (ICTC), pages 1161–1163.
Li, L. and Li Fei-Fei (2007). What, where and who? classi-
fying events by scene and object recognition. In 2007
IEEE 11th International Conference on Computer Vi-
sion, pages 1–8.
Li, L., Zhang, T., Kang, Z., and Zhang, W.-H. (2023).
Design and implementation of a soccer ball de-
tection system with multiple cameras. ArXiv,
abs/2302.00123.
Microsoft (2023). Shaping the future of the game. Accessed
on November 3, 2023.
Parmar, P. and Morris, B. (2019a). Action quality assess-
ment across multiple actions. In IEEE Winter Con-
ference on Applications of Computer Vision, WACV
2019, Waikoloa Village, HI, USA, January 7-11, 2019,
pages 1468–1476. IEEE.
Parmar, P. and Morris, B. T. (2019b). What and how well
you performed? A multitask learning approach to ac-
tion quality assessment. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 304–
313. Computer Vision Foundation / IEEE.
Penate-Sanchez, A., Freire-Obreg
´
on, D., Lorenzo-Meli
´
an,
A., Lorenzo-Navarro, J., and Castrill
´
on-Santana, M.
(2020). TGC20ReId: A dataset for sport event re-
identification in the wild. Pattern Recognition Letters,
138:355–361.
Santana, O. J., Freire-Obreg
´
on, D., Hern
´
andez-Sosa, D.,
Lorenzo-Navarro, J., S
´
anchez-Nielsen, E., and Cas-
trill
´
on-Santana, M. (2023). Facial expression analysis
in a wild sporting environment. Multimedia Tools and
Applications, 82(8):11395–11415.
Shih, H.-C. (2018). A survey of content-aware video anal-
ysis for sports. IEEE Transactions on Circuits and
Systems for Video Technology, 28(5):1212–1231.
Simonyan, K. and Zisserman, A. (2014). Two-stream con-
volutional networks for action recognition in videos.
ArXiv, abs/1406.2199.
Stein, M., Janetzko, H., Lamprecht, A., Breitkreutz, T.,
Zimmermann, P., Goldl
¨
ucke, B., Schreck, T., An-
drienko, G., Grossniklaus, M., and Keim, D. A.
(2018). Bring it to the pitch: Combining video and
movement data to enhance team sport analysis. IEEE
Transactions on Visualization and Computer Graph-
ics, 24(1):13–22.
Teranishi, M., Fujii, K., and Takeda, K. (2020). Trajectory
prediction with imitation learning reflecting defensive
evaluation in team sports. In 2020 IEEE 9th Global
Conference on Consumer Electronics (GCCE), pages
124–125.
Wang, S., Xu, Y., Zheng, Y., Zhu, M., Yao, H., and Xiao,
Z. (2019). Tracking a golf ball with high-speed stereo
vision system. IEEE Transactions on Instrumentation
and Measurement, 68(8):2742–2754.
Wang, X., Girshick, R. B., Gupta, A. K., and He, K. (2017).
Non-local neural networks. 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 7794–7803.
Wu, Y., Xie, X., Wang, J., Deng, D., Liang, H., Zhang, H.,
Cheng, S., and Chen, W. (2019). Forvizor: Visualiz-
ing spatio-temporal team formations in soccer. IEEE
Transactions on Visualization and Computer Graph-
ics, 25(1):65–75.
Xu, C., Fu, Y., Zhang, B., Chen, Z., Jiang, Y.-G., and
Xue, X. (2020). Learning to score figure skating sport
videos. IEEE Transactions on Circuits and Systems
for Video Technology, 30(12):4578–4590.
Zhang, Y., Sun, P., Jiang, Y., Yu, D., Yuan, Z., Luo, P., Liu,
W., and Wang, X. (2021). ByteTrack: Multi-Object
Tracking by Associating Every Detection Box. In Eu-
ropean Conference on Computer Vision.
ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods
90