
ety could be increased by incorporating concepts such
as dynamic neighborhoods and repulsive forces. The
impact of more optimal feature selection can also be
studied more closely. Moreover, we intend to opti-
mize and test the algorithm on more large datasets.
REFERENCES
Abdulkadium, A. M., Shekan, R. A. A., and Hussain,
H. A. (2022). Application of data mining and knowl-
edge discovery in medical databases. Webology,
19(1):4912–4924.
Al-behadili, H. N. K., Ku-Mahamud, K., and Sagban, R.
(2020). Hybrid ant colony optimization and iterated
local search for rules-based classification. J. Theor.
Appl. Inf. Technol, 98(04):657–671.
Al-Hashem, M. A., Alqudah, A. M., and Qananwah, Q.
(2021). Performance evaluation of different machine
learning classification algorithms for disease diagno-
sis. International Journal of E-Health and Medical
Communications (IJEHMC), 12(6):1–28.
Al-Muhaideb, S. and El Bachir Menai, M. (2013). Hybrid
metaheuristics for medical data classification. Hybrid
metaheuristics, pages 187–217.
Alaiad, A., Najadat, H., Mohsen, B., and Balhaf, K.
(2020). Classification and association rule min-
ing technique for predicting chronic kidney disease.
Journal of Information & Knowledge Management,
19(01):2040015.
Alkeshuosh, A. H., Moghadam, M. Z., Al Mansoori, I., and
Abdar, M. (2017). Using pso algorithm for producing
best rules in diagnosis of heart disease. In 2017 in-
ternational conference on computer and applications
(ICCA), pages 306–311. IEEE.
Changpetch, P., Pitpeng, A., Hiriote, S., and Yuangyai, C.
(2021). Integrating data mining techniques for na
¨
ıve
bayes classification: Applications to medical datasets.
Computation, 9(9):99.
Cristani, M., Olvieri, F., Workneh, T. C., Pasetto, L., and
Tomazzoli, C. (2022). Classification rules explain ma-
chine learning. In ICAART (3), pages 897–904.
Farid, D. M., Al-Mamun, M. A., Manderick, B., and Nowe,
A. (2016). An adaptive rule-based classifier for min-
ing big biological data. Expert Systems with Applica-
tions, 64:305–316.
Freitas, A. A. (2014). Comprehensible classification mod-
els: a position paper. ACM SIGKDD explorations
newsletter, 15(1):1–10.
F
¨
urnkranz, J. (1999). Separate-and-conquer rule learning.
Artificial Intelligence Review, 13:3–54.
Gad, A. G. (2022). Particle swarm optimization algorithm
and its applications: a systematic review. Archives of
computational methods in engineering, 29(5):2531–
2561.
Holden, N. and Freitas, A. A. (2008). A hybrid pso/aco
algorithm for discovering classification rules in data
mining. Journal of Artificial evolution and Applica-
tions, 2008.
Hossain, S. K. M., Ema, S. A., Sohn, H., et al. (2022). Rule-
based classification based on ant colony optimization:
a comprehensive review. Applied Computational In-
telligence and Soft Computing, 2022.
Houssein, E. H., Gad, A. G., Hussain, K., and Suganthan,
P. N. (2021). Major advances in particle swarm op-
timization: theory, analysis, and application. Swarm
and Evolutionary Computation, 63:100868.
Jabba, A. M. (2021). Rule induction with iterated local
search. International Journal of Intelligent Engineer-
ing & Systems, 14(4).
Kononenko, I. (2001). Machine learning for medical diag-
nosis: history, state of the art and perspective. Artifi-
cial Intelligence in medicine, 23(1):89–109.
Kumbhare, T. A. and Chobe, S. V. (2014). An overview
of association rule mining algorithms. International
Journal of Computer Science and Information Tech-
nologies, 5(1):927–930.
Lourenc¸o, H. R., Martin, O. C., and St
¨
utzle, T. (2003). It-
erated local search. In Handbook of metaheuristics,
pages 320–353. Springer.
Mangat, V. and Vig, R. (2014). Dynamic pso-based asso-
ciative classifier for medical datasets. IETE Technical
Review, 31(4):258–265.
Mienye, I. D. and Sun, Y. (2021). Performance analysis
of cost-sensitive learning methods with application to
imbalanced medical data. Informatics in Medicine
Unlocked, 25:100690.
Otero, F. E. and Freitas, A. A. (2016). Improving the in-
terpretability of classification rules discovered by an
ant colony algorithm: extended results. Evolutionary
computation, 24(3):385–409.
Rudin, C. (2019). Stop explaining black box machine learn-
ing models for high stakes decisions and use inter-
pretable models instead. Nature machine intelligence,
1(5):206–215.
Singh, N. and Singh, P. (2021). Medical diagnosis of coro-
nary artery disease using fuzzy rule-based classifica-
tion approach. In Advances in Biomedical Engineer-
ing and Technology: Select Proceedings of ICBEST
2018, pages 321–330. Springer.
Telikani, A., Gandomi, A. H., and Shahbahrami, A. (2020).
A survey of evolutionary computation for association
rule mining. Information Sciences, 524:318–352.
Thabtah, F. and Peebles, D. (2020). A new machine learn-
ing model based on induction of rules for autism de-
tection. Health informatics journal, 26(1):264–286.
Tharwat, A. (2020). Classification assessment methods. Ap-
plied computing and informatics, 17(1):168–192.
Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K.,
Gopidi, R., Chang, J.-F., and Hua, L. (2012). Data
mining in healthcare and biomedicine: a survey of the
literature. Journal of medical systems, 36:2431–2448.
Zomorodi-moghadam, M., Abdar, M., Davarzani, Z., Zhou,
X., Pławiak, P., and Acharya, U. R. (2021). Hybrid
particle swarm optimization for rule discovery in the
diagnosis of coronary artery disease. Expert Systems,
38(1):e12485.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
914