He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proc. IEEE
CVPR2016, pages 770–778.
Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion
probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851.
Inagaki, Y., Kobayashi, Y., Takahashi, K., Fujii, T., and
Nagahara, H. (2018). Learning to capture light
fields through a coded aperture camera. In Proc.
ECCV2018, pages 418–434.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: ac-
celerating deep network training by reducing internal
covariate shift. In Proc. ICML2015, pages 448–456.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. (2017). Image-
to-image translation with conditional adversarial net-
works. In Proc. IEEE CVPR2017, pages 5967–5976.
Kingma, D. and Ba, L. (2016). Adam: A method for
stochastic optimization. In Proc. ICLR2016.
Li, J., Yue, T., Zhao, S., and Hu, X. (2022). Fisher informa-
tion guidance for learned time-of-flight imaging. In
Proc. IEEE/CVF CVPR2022, pages 16313–16322.
Li, K., Dai, D., and Van, G. L. (2023). Jointly learning
band selection and filter array design for hyperspec-
tral imaging. In Proc. IEEE WACV2023, pages 6384–
6394.
Liu, G., Reda, F., Shih, K., Wang, T.-C., Tao, A., and Catan-
zaro, B. (2018). Image inpainting for irregular holes
using partial convolutions. In Proc. ECCV2018, pages
85–100.
Metzler, C., Ikoma, H., Peng, Y., and Wetzstein, G. (2020).
Deep optics for single-shot high-dynamic-range imag-
ing. In Proc. IEEE/CVF CVPR2020, pages 1375–
1385.
Narasimhan, S., Koppal, S., and Yamazaki, S. (2008). Tem-
poral dithering of illumination for fast active vision.
In Proc. ECCV2008, pages 830–844.
Nayar, S., Krishnan, G., Grossberg, M., and Raskar, R.
(2006). Fast separation of direct and global compo-
nents of a scene using high frequency illumination. In
Proc. ACM SIGGRAPH 2006, pages 935–944.
Nie, S., Gu, L., Subpa-Asa, A., Kacher, I., Nishino, K., and
Sato, I. (2019). A data-driven approach for direct and
global component separation from a single image. In
Proc. ACCV2018 Part VI, pages 133–148.
Nie, S., Gu, L., Zheng, Y., Lam, A., Ono, N., and Sato,
I. (2018). Deeply learned filter response functions
for hyperspectral reconstruction. In Proc. IEEE/CVF
CVPR2018, pages 4767–4776.
Nisaka, Y., Matsuoka, R., Amano, T., and Okabe, T. (2021).
Fast separation of specular, diffuse, and global com-
ponents via polarized pattern projection. In Proc. IW-
FCV2021 (CCIS1405), pages 294–308.
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. (2022). High-resolution image synthe-
sis with latent diffusion models. In Proc. IEEE/CVF
CVPR2022, pages 10684–10695.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In Proc. MICCAI2015, pages 234–241.
Schechner, Y., Nayar, S., and Belhumeur, P. (2003). A
theory of multiplexed illumination. In Proc. IEEE
ICCV2003, pages 808–815.
Shi, Z., Bahat, Y., Baek, S.-H., Fu, Q., Amata, H., Li,
X., Chakravarthula, P., Heidrich, W., and Heide, F.
(2022). Seeing through obstructions with diffractive
cloaking. ACM TOG, 41(4):1–15.
Subpa-Asa, A., Fu, Y., Zheng, Y., Amano, T., and Sato, I.
(2018). Separating the direct and global components
of a single image. Journal of Information Processing,
26:755–767.
Sun, Q., Tseng, E., Fu, Q., Heidrich, W., and Heide, F.
(2020). Learning rank-1 diffractive optics for single-
shot high dynamic range imaging. In Proc. IEEE/CVF
CVPR2020, pages 1386–1396.
Tasneem, Z., Milione, G., Tsai, Y.-H., Yu, X., Veeraragha-
van, A., Chandraker, M., and Pittaluga, F. (2022).
Learning phase mask for privacy-preserving passive
depth estimation. In Proc. ECCV2022, pages 504–
521.
Torii, M., Okabe, T., and Amano, T. (2019). Multispectral
direct-global separation of dynamic scenes. In Proc.
IEEE WACV2019, pages 1923–1931.
Wu, Y., Boominathan, V., Chen, H., Sankaranarayanan, A.,
and Veeraraghavan, A. (2019). Phasecam3d-learning
phase masks for passive single view depth estimation.
In Proc. IEEE ICCP2019, pages 1–12.
Xu, Z., Sunkavalli, K., Hadap, S., and Ramamoorthi, R.
(2018). Deep image-based relighting from optimal
sparse samples. ACM TOG, 37(4):1–13.
Yoshida, M., Torii, A., Okutomi, M., Endo, K., Sugiyama,
Y., Taniguchi, R., and Nagahara, H. (2018). Joint
optimization for compressive video sensing and re-
construction under hardware constraints. In Proc.
ECCV2018, pages 634–649.
Zhu, J.-Y., Park, T., Isola, P., and Efros, A. (2017). Unpaired
image-to-image translation using cycle-consistent ad-
versarial networks. In Proc. IEEE ICCV2017, pages
2242–2251.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
606