S., and Yang, L. (2021). Physics-informed machine
learning. Nature Reviews Physics, 2:422–440.
Kästner, M., Riedel, M., Strickert, M., and Villmann,
T. (2012). Class border sensitive generalized
learning vector quantization - an alternative to
support vector machines. Machine Learning
Reports, 6(MLR-04-2012):40–56. ISSN:1865-
3960, http://www.techfak.uni-bielefeld.de/
˜
fschleif/mlr/mlr_04_2012.pdf.
Kohonen, T. (1988). Learning Vector Quantization. Neural
Networks, 1(Supplement 1):303.
Lisboa, P., Saralajew, S., Vellido, A., Fernández-Domenech,
R., and Villmann, T. (2023). The coming of age of
interpretable and explainable machine learning models.
Neurocomputing, 535:25–39.
Lundberg, S. and Lee, S.-I. (2017). A unified approach
to interpreting model predictions. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances
in Neural Information Processing Systems, volume 30,
pages 4768–4777. Curran Associates, Inc.
Mohannazadeh Bakhtiari, M. and Villmann, T. (2023).
The geometry of decision borders between affine
space prototypes for nearest prototype classifiers.
In Rutkowski, L., Scherer, R., Pedrycz, M.
K. W., Tadeusiewicz, R., and Zurada, J., editors,
Proceedings of the International Conference on
Artificial Intelligence and Soft Computing (ICAISC),
volume 14125 of LNAI, pages 134–144.
Montavon, G., Binder, A., Lapuschkin, S., Samek, W.,
and Müller, K.-R. (2019). Layer-Wise Relevance
Propagation: An Overview, pages 193–209. Springer
International Publishing, Cham.
Murdoch, W., Singh, C., Kumbiera, K., Abbasi-Aslb,
R., and Yu, B. (2019). Interpretable machine
learning: definitions, methods, and applications.
Proccedings of the National Academy od Science
(PNAS), 116(44):22071–22080.
Ravichandran, J. (2020). Prototorch. https://github.com/si-c
im/prototorch.
Ravichandran, J., Kaden, M., and Villmann, T. (2022).
Variants of recurrent learning vector quantization.
Neurocomputing, 502(8–9):27–36.
Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L.,
and Zhong, C. (2022). Interpretable machine learning:
Fundamental principles and 10 grand challenges.
Statistics Survey, 16:1–85.
Samek, W., Monatvon, G., Vedaldi, A., Hansen, L.,
and Müller, K.-R., editors (2019). Explainable
AI: Interpreting, Explaining and Visualizing Deep
Learning, number 11700 in LNAI. Springer.
Samek, W., Montavon, G., Lapuschkin, S., Anders, C., and
Müller, K.-R. (2021). Explaining deep neural networks
and beyond: A review of methods and applications.
Proceedings of the IEEE, 109(3):247–278.
Saralajew, S., Holdijk, L., Rees, M., and Villmann, T.
(2019). Robustness of generalized learning vector
quantization models against adversarial attacks. In
Vellido, A., Gibert, K., Angulo, C., and Guerrero, J.,
editors, Advances in Self-Organizing Maps, Learning
Vector Quantization, Clustering and Data Visualization
– Proceedings of the 13th International Workshop
on Self-Organizing Maps and Learning Vector
Quantization, Clustering and Data Visualization,
WSOM+2019, Barcelona, volume 976 of Advances
in Intelligent Systems and Computing, pages 189–199.
Springer Berlin-Heidelberg.
Sato, A. and Yamada, K. (1996). Generalized learning
vector quantization. In Touretzky, D. S., Mozer, M. C.,
and Hasselmo, M. E., editors, Advances in Neural
Information Processing Systems 8. Proceedings of the
1995 Conference, pages 423–9. MIT Press, Cambridge,
MA, USA.
Schneider, P., Bunte, K., Stiekema, H., Hammer, B.,
Villmann, T., and Biehl, M. (2010). Regularization
in matrix relevance learning. IEEE Transactions on
Neural Networks, 21(5):831–840.
Schneider, P., Hammer, B., and Biehl, M. (2009). Adaptive
relevance matrices in learning vector quantization.
Neural Computation, 21:3532–3561.
Semenova, L., Rudin, C., and Parr, R. (2022). On
the existence of simpler machine learning models.
In ACM Conference on Fairness, Accountability,
and Transparency (FAccT’22), pages 1827–1858.
Association for Computing Machinery.
Shrikumar, A., Greenside, P., and Kundaje, A. (2017).
Learning important features through propagating
activation differences. In Proceedings of the
34th International Conference on Machine Learning
(ICML), volume 70, pages 3145–3153.
Snel, B. (2000). STRING: A web-server to retrieve and
display the repeatedly occurring neighbourhood of a
gene. Nucleic Acids Research, 28(18):3442–3444.
Staps, D., Schubert, R., Kaden, M., Lampe, A., Hermann,
W., and Villmann, T. (2022). Prototype-based one-
class-classification learning using local representations.
In Proceedings of the IEEE International Joint
Conference on Neural Networks (IJCNN) - Padua, Los
Alamitos. IEEE Press.
Torun, F., Winter, S., Riese, S. D. F., Vorobyev, A.,
Mueller-Reif, J., Geyer, P., and Strauss, M. (2022).
Transparent exploration of machine learning for
biomarker discovery from proteomics and omics data.
Journal of Proteome Research, 22(2):359–367.
Villmann, T., Biehl, M., Villmann, A., and Saralajew,
S. (2017a). Fusion of deep learning architectures,
multilayer feedforward networks and learning
vector quantizers for deep classification learning.
In Proceedings of the 12th Workshop on Self-
Organizing Maps and Learning Vector Quantization
(WSOM2017+), pages 248–255. IEEE Press.
Villmann, T., Bohnsack, A., and Kaden, M. (2017b). Can
learning vector quantization be an alternative to SVM
and deep learning? Journal of Artificial Intelligence
and Soft Computing Research, 7(1):65–81.
von Rueden, L., Mayer, S., Georgiev, K. B. B., Giesselbach,
S., Heese, R., Kirsch, B., Pick, J. P. A., Walczak, R.
R. M., Garcke, J., Bauckhage, C., and Schuecker, J.
(2023). Informed machine learning – A taxonomy and
survey of integrating prior knowledge into learning
BIOINFORMATICS 2024 - 15th International Conference on Bioinformatics Models, Methods and Algorithms
366