
this direction.
Incorporating QFML approaches that use quan-
tum communication or quantum networks is a further
important research direction. This is for instance dis-
cussed in (Chehimi et al., 2023) and (Wang et al.,
2023). As the aim in this paper was to evaluate a
straightforward approach, in future more elaborate
schemes as well as different domains and use-cases in
future communication networks should be explored.
ACKNOWLEDGEMENTS
Sponsored in part by the Bavarian Ministry of Eco-
nomic Affairs, Regional Development and Energy as
part of the 6GQT project.
REFERENCES
Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Ahmed,
S., Ajith, V., Alam, M. S., Alonso-Linaje, G., Akash-
Narayanan, B., Asadi, A., et al. (2018). Pennylane:
Automatic differentiation of hybrid quantum-classical
computations. arXiv preprint arXiv:1811.04968.
Chehimi, M., Chen, S. Y.-C., Saad, W., Towsley, D., and
Debbah, M. (2023). Foundations of quantum feder-
ated learning over classical and quantum networks.
IEEE Network.
Chehimi, M. and Saad, W. (2022). Quantum federated
learning with quantum data. In ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 8617–8621.
IEEE.
Chen, S. Y.-C. and Yoo, S. (2021). Federated quantum ma-
chine learning. Entropy, 23(4):460.
Geyer, R. C., Klein, T., and Nabi, M. (2017). Differentially
private federated learning: A client level perspective.
arXiv preprint arXiv:1712.07557.
Kone
ˇ
cn
`
y, J., McMahan, H. B., Yu, F. X., Richt
´
arik, P.,
Suresh, A. T., and Bacon, D. (2016). Federated learn-
ing: Strategies for improving communication effi-
ciency. arXiv preprint arXiv:1610.05492.
Kumar, N., Heredge, J., Li, C., Eloul, S., Sureshbabu,
S. H., and Pistoia, M. (2023). Expressive variational
quantum circuits provide inherent privacy in federated
learning. arXiv preprint arXiv:2309.13002.
Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020).
Federated learning: Challenges, methods, and fu-
ture directions. IEEE signal processing magazine,
37(3):50–60.
Li, W., Lu, S., and Deng, D.-L. (2021). Quantum fed-
erated learning through blind quantum computing.
Science China Physics, Mechanics & Astronomy,
64(10):100312.
Lyu, L., Yu, H., and Yang, Q. (2020). Threats to federated
learning: A survey. arXiv preprint arXiv:2003.02133.
Mammen, P. M. (2021). Federated learning: Opportunities
and challenges. arXiv preprint arXiv:2101.05428.
McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. (2017). Communication-efficient learn-
ing of deep networks from decentralized data. In Ar-
tificial intelligence and statistics, pages 1273–1282.
PMLR.
Mitarai, K., Negoro, M., Kitagawa, M., and Fujii, K.
(2018). Quantum circuit learning. Physical Review
A, 98(3):032309.
Rofougaran, R., Yoo, S., Tseng, H.-H., and Chen, S. Y.-
C. (2023). Federated quantum machine learning with
differential privacy. arXiv preprint arXiv:2310.06973.
Schuld, M., Bocharov, A., Svore, K. M., and Wiebe, N.
(2020). Circuit-centric quantum classifiers. Physical
Review A, 101(3):032308.
Schuld, M. and Killoran, N. (2019). Quantum machine
learning in feature hilbert spaces. Physical review let-
ters, 122(4):040504.
Wang, T., Tseng, H.-H., and Yoo, S. (2023). Quantum
federated learning with quantum networks. arXiv
preprint arXiv:2310.15084.
Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Federated
machine learning: Concept and applications. ACM
Transactions on Intelligent Systems and Technology
(TIST), 10(2):1–19.
Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. (2018). Federated learning with non-iid data. arXiv
preprint arXiv:1806.00582.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
942