
It is interesting that the optimal illumination condi-
tions themselves show the effectiveness of extended
light sources. Specifically, our proposed method uses
the combinations of various point and extended light
sources.
5 CONCLUSION AND FUTURE
WORK
We achieved relighting from a small number of im-
ages by using not only point light sources but also ex-
tended light sources for efficiently capturing specular
reflection components. Specifically, we proposed a
CNN-based method that simultaneously learns the il-
lumination module and the reconstruction module in
an end-to-end manner. We conducted a number of ex-
periments using real images captured with a display-
camera system, and confirmed the effectiveness of our
proposed method. The extension of our method for
other high-frequency components of images such as
cast shadows and caustics is one of the future direc-
tions of our study.
ACKNOWLEDGEMENTS
This work was partly supported by JSPS KAKENHI
Grant Numbers JP23H04357 and JP20H00612.
REFERENCES
Akiba, T., Sano, S., Yanase, T., Ohta, T., and M.Koyama
(2019). Optuna: A next-generation hyperparame-
ter optimization framework. In Proc. ACM SIGKDD
KDD2019, pages 2623–2631.
Chakrabarti, A. (2016). Learning sensor multiplexing de-
sign through back-propagation. pages 3089–3097.
Clevert, D., Unterthiner, T., and Hochreiter, S. (2016). Fast
and accurate deep network learning by exponential
linear units (ELUs). In Proc. ICLR2016.
Debevec, P. (1998). Rendering synthetic objects into real
scenes: bridging traditional and image-based graph-
ics with global illumination and high dynamic range
photography. In Proc. ACM SIGGRAPH1998, pages
189–198.
Debevec, P., Hawkins, T., Tchou, C., Duiker, H., Sarokin,
W., and Sagar, M. (2000). Acquiring the reflectance
field of a human face. In Proc. SIGGRH2000, pages
145–156.
Einarsson, P., Chabert, C.-F., Jones, A., Ma, W.-C., Lam-
ond, B., Hawkins, T., Bolas, M., Sylwan, S., and De-
bevec, P. (2006). Relighting human locomotion with
flowed reflectance fields. In Proc. EGSR2006, pages
183–194.
Fuchs, M., Lensch, H., Blanz, V., and Seidel, H. (2007). Su-
perresolution reflectance fields: Synthesizing images
for intermediate light directions. In Proc. EGSR2007,
volume 26, pages 447–456.
Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu,
X., and Debevec, P. (2011). Multiview face capture
using polarized spherical gradient illumination. ACM
TOG, 30(6):1–10.
Hawkins, T., Wenger, A., Tchou, C., Gardner, A.,
G
¨
oransson, F., and Debevec, P. (2004). Animatable
facial reflectance fields. In Proc. EGSR2004, pages
309–319.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification. In Proc. IEEE ICCV2015,
pages 1026–1034.
Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion
probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851.
Inagaki, Y., Kobayashi, Y., Takahashi, K., Fujii, T., and
Nagahara, H. (2018). Learning to capture light
fields through a coded aperture camera. In Proc.
ECCV2018, pages 418–434.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. (2017). Image-
to-image translation with conditional adversarial net-
works. In Proc. IEEE CVPR2017, pages 5967–5976.
Kingma, D. and Ba, L. (2016). Adam: A method for
stochastic optimization. In Proc. ICLR2016.
Li, J., Yue, T., Zhao, S., and Hu, X. (2022). Fisher informa-
tion guidance for learned time-of-flight imaging. In
Proc. IEEE/CVF CVPR2022, pages 16313–16322.
Li, K., Dai, D., and Van, G. L. (2023). Jointly learning
band selection and filter array design for hyperspec-
tral imaging. In Proc. IEEE WACV2023, pages 6384–
6394.
Lin, S. and Lee, S. (1999). A representation of specular
appearance. volume 2, pages 849–854.
Liu, G., Reda, F., Shih, K., Wang, T.-C., Tao, A., and Catan-
zaro, B. (2018). Image inpainting for irregular holes
using partial convolutions. In Proc. ECCV2018, pages
85–100.
Meka et al., A. (2019). Deep reflectance fields: high-
quality facial reflectance field inference from color
gradient illumination. ACM TOG, 38(4):Article No.7.
Metzler, C., Ikoma, H., Peng, Y., and Wetzstein, G. (2020).
Deep optics for single-shot high-dynamic-range imag-
ing. In Proc. IEEE/CVF CVPR2020, pages 1375–
1385.
Nayar, S., Ikeuchi, K., and Kanade, T. (1990). Determining
shape and reflectance of hybrid surfaces by photomet-
ric sampling. IEEE Trans. Robotics and Automation,
6(4):418–431.
Nie, S., Gu, L., Zheng, Y., Lam, A., Ono, N., and Sato,
I. (2018). Deeply learned filter response functions
for hyperspectral reconstruction. In Proc. IEEE/CVF
CVPR2018, pages 4767–4776.
Peers, P., Mahajan, D., Lamond, B., Ghosh, A., Matusik,
W., Ramamoorthi, R., and Debevec, P. (2009). Com-
pressive light transport sensing. ACM TOG, 28(1):Ar-
ticle No.3.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
614