
Farid, H. (2022a). Lighting (in)consistency of paint by text.
arXiv preprint.
Farid, H. (2022b). Perspective (in)consistency of paint by
text. arXiv preprint.
Frank, J., Eisenhofer, T., Sch
¨
onherr, L., Fischer, A.,
Kolossa, D., and Holz, T. (2020). Leveraging fre-
quency analysis for deep fake image recognition.
In International Conference on Machine Learning
(ICML).
Girish, S., Suri, S., Rambhatla, S. S., and Shrivastava, A.
(2021). Towards discovery and attribution of open-
world GAN generated images. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Gragnaniello, D., Cozzolino, D., Marra, F., Poggi, G., and
Verdoliva, L. (2021). Are GAN generated images easy
to detect? A critical analysis of the state-of-the-art.
In IEEE International Conference on Multimedia and
Expo (ICME).
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. (2017). GANs trained by a two time-
scale update rule converge to a local nash equilibrium.
In Advances in Neural Information Processing Sys-
tems (NeurIPS).
Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion
probabilistic models. In Advances in Neural Informa-
tion Processing Systems (NeurIPS).
Hu, S., Li, Y., and Lyu, S. (2021). Exposing GAN-
Generated faces using inconsistent corneal specular
highlights. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
Huang, K. (2023). Why Pope Francis is the star of A.I.-
generated photos. The New York Times.
Jeong, Y., Kim, D., Ro, Y., Kim, P., and Choi, J. (2022). Fin-
gerprintNet: Synthesized fingerprints for generated
image detection. In European Conference on Com-
puter Vision (ECCV).
Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Pro-
gressive growing of GANs for improved quality, sta-
bility, and variation. In International Conference on
Learning Representations (ICLR).
Karras, T., Laine, S., and Aila, T. (2019). A style-based
generator architecture for generative adversarial net-
works. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).
Khayatkhoei, M. and Elgammal, A. (2022). Spatial fre-
quency bias in convolutional generative adversarial
networks. AAAI Conference on Artificial Intelligence
(AAAI).
Kingma, D., Salimans, T., Poole, B., and Ho, J. (2021).
Variational diffusion models. In Advances in Neural
Information Processing Systems (NeurIPS).
Kingma, D. P. and Gao, R. (2023). Understanding diffusion
objectives as the ELBO with simple data augmenta-
tion. In Advances in Neural Information Processing
Systems (NeurIPS).
Liu, L., Ren, Y., Lin, Z., and Zhao, Z. (2022). Pseudo nu-
merical methods for diffusion models on manifolds.
In International Conference on Learning Representa-
tions (ICLR).
Lyu, S. (2008). Natural Image Statistics in Digital Image
Forensics. PhD thesis, Dartmouth College.
Mandelli, S., Bonettini, N., Bestagini, P., and Tubaro, S.
(2022). Detecting GAN-generated images by orthog-
onal training of multiple CNNs. In IEEE International
Conference on Image Processing (ICIP).
Marra, F., Gragnaniello, D., Verdoliva, L., and Poggi, G.
(2019). Do GANs leave artificial fingerprints? In
IEEE Conference on Multimedia Information Pro-
cessing and Retrieval (MIPR).
McCloskey, S. and Albright, M. (2019). Detecting GAN-
generated imagery using saturation cues. In IEEE In-
ternational Conference on Image Processing (ICIP).
Nataraj, L., Mohammed, T. M., Manjunath, B. S., Chan-
drasekaran, S., Flenner, A., Bappy, J. H., and Roy-
Chowdhury, A. K. (2019). Detecting GAN generated
fake images using co-occurrence matrices. Electronic
Imaging.
Nichol, A. Q. and Dhariwal, P. (2021). Improved denoising
diffusion probabilistic models. In International Con-
ference on Machine Learning (ICML).
Nightingale, S. J. and Farid, H. (2022). AI-synthesized
faces are indistinguishable from real faces and more
trustworthy. Proceedings of the National Academy of
Sciences.
Ojha, U., Li, Y., and Lee, Y. J. (2023). Towards universal
fake image detectors that generalize across generative
models. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh,
G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., Krueger, G., and Sutskever, I. (2021). Learn-
ing transferable visual models from natural language
supervision. In International Conference on Machine
Learning (ICML).
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. (2022). Hierarchical text-conditional image gener-
ation with CLIP latents. arXiv preprint.
Rissanen, S., Heinonen, M., and Solin, A. (2023). Gener-
ative modelling with inverse heat dissipation. In In-
ternational Conference on Learning Representations
(ICLR).
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Om-
mer, B. (2022). High-resolution image synthesis with
latent diffusion models. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
Net: Convolutional networks for biomedical image
segmentation. In International Conference on Med-
ical Image Computing and Computer Assisted Inter-
vention.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., Berg, A. C., and Fei-Fei, L. (2015). Ima-
geNet large scale visual recognition challenge. Inter-
national Journal of Computer Vision (IJCV).
Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Den-
ton, E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi,
S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet, D. J.,
and Norouzi, M. (2022). Photorealistic text-to-image
Towards the Detection of Diffusion Model Deepfakes
455