
Gu, Y., Pears, N., and Sun, H. (2023). Adversarial 3d
face disentanglement of identity and expression. In
2023 IEEE 17th International Conference on Auto-
matic Face and Gesture Recognition (FG), pages 1–7.
IEEE.
Jiang, Z.-H., Wu, Q., Chen, K., and Zhang, J. (2019). Dis-
entangled representation learning for 3d face shape.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11957–
11966.
Jung, Y., Jang, W., Kim, S., Yang, J., Tong, X., and Lee, S.
(2022). Deep deformable 3d caricatures with learned
shape control. In ACM SIGGRAPH 2022 Conference
Proceedings, pages 1–9.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Lewis, J. P., Cordner, M., and Fong, N. (2000). Pose space
deformation: a unified approach to shape interpolation
and skeleton-driven deformation. In Proceedings of
the 27th annual conference on Computer graphics and
interactive techniques, pages 165–172.
Li, R., Bladin, K., Zhao, Y., Chinara, C., Ingraham, O.,
Xiang, P., Ren, X., Prasad, P., Kishore, B., Xing, J.,
et al. (2020). Learning formation of physically-based
face attributes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 3410–3419.
Li, T., Bolkart, T., Black, M. J., Li, H., and Romero, J.
(2017). Learning a model of facial shape and expres-
sion from 4D scans. ACM Transactions on Graphics,
(Proc. SIGGRAPH Asia), 36(6):194:1–194:17.
Lipman, Y. (2021). Phase transitions, distance functions,
and implicit neural representations. arXiv preprint
arXiv:2106.07689.
Liu, S., Saito, S., Chen, W., and Li, H. (2019). Learning
to infer implicit surfaces without 3d supervision. Ad-
vances in Neural Information Processing Systems, 32.
L
¨
uthi, M., Gerig, T., Jud, C., and Vetter, T. (2017). Gaussian
process morphable models. IEEE transactions on pat-
tern analysis and machine intelligence, 40(8):1860–
1873.
Marian Kleineberg (2021). mesh-to-sdf. https://github.com/
marian42/mesh
to sdf.
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S.,
and Geiger, A. (2019). Occupancy networks: Learn-
ing 3d reconstruction in function space. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4460–4470.
Olivier, N., Baert, K., Danieau, F., Multon, F., and Avril, Q.
(2023). Facetunegan: Face autoencoder for convolu-
tional expression transfer using neural generative ad-
versarial networks. Computers & Graphics, 110:69–
85.
Park, J. J., Florence, P., Straub, J., Newcombe, R., and
Lovegrove, S. (2019). Deepsdf: Learning continuous
signed distance functions for shape representation. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 165–174.
Pears, N., Dai, H., Smith, W., and Sun, H. (2023). Lapla-
cian icp for progressive registration of 3d human head
meshes. In 2023 IEEE 17th International Conference
on Automatic Face and Gesture Recognition (FG),
pages 1–7. IEEE.
Peng, S., Dong, J., Wang, Q., Zhang, S., Shuai, Q., Zhou,
X., and Bao, H. (2021). Animatable neural radiance
fields for modeling dynamic human bodies. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision, pages 14314–14323.
Saito, S., Huang, Z., Natsume, R., Morishima, S.,
Kanazawa, A., and Li, H. (2019). Pifu: Pixel-aligned
implicit function for high-resolution clothed human
digitization. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 2304–
2314.
Sitzmann, V., Martel, J. N., Bergman, A. W., Lindell, D. B.,
and Wetzstein, G. (2020). Implicit neural representa-
tions with periodic activation functions. In arXiv.
Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., R
¨
ossl,
C., and Seidel, H.-P. (2004). Laplacian surface
editing. In Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry pro-
cessing, pages 175–184.
Sun, H., Pears, N., and Gu, Y. (2022). Information
bottlenecked variational autoencoder for disentangled
3d facial expression modelling. In Proceedings of
the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 157–166.
Sundararaman, R., Pai, G., and Ovsjanikov, M. (2022).
Implicit field supervision for robust non-rigid shape
matching.
Taherkhani, F., Rai, A., Gao, Q., Srivastava, S., Chen, X.,
de la Torre, F., Song, S., Prakash, A., and Kim, D.
(2023). Controllable 3d generative adversarial face
model via disentangling shape and appearance. In
Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 826–836.
Takikawa, T., Litalien, J., Yin, K., Kreis, K., Loop, C.,
Nowrouzezahrai, D., Jacobson, A., McGuire, M., and
Fidler, S. (2021). Neural geometric level of detail:
Real-time rendering with implicit 3d shapes. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11358–11367.
Tewari, A., Seidel, H.-P., Elgharib, M., Theobalt, C., et al.
(2021). Learning complete 3d morphable face mod-
els from images and videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 3361–3371.
Yang, H., Zhu, H., Wang, Y., Huang, M., Shen, Q., Yang,
R., and Cao, X. (2020). Facescape: a large-scale high
quality 3d face dataset and detailed riggable 3d face
prediction. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition.
Yenamandra, T., Tewari, A., Bernard, F., Seidel, H.-P., El-
gharib, M., Cremers, D., and Theobalt, C. (2021).
i3dmm: Deep implicit 3d morphable model of human
heads. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
12803–12813.
Parts-Based Implicit 3D Face Modeling
211