be co nsidered a stepping stone to solving the general
Optimal Path problem, which can provide great bene-
fits to professionals and others if efficiently and suffi-
ciently so lved. Another aim of the paper has been to
motivate the integration of classical algorithms with
the latest state-of-the-art methods and the solution of
fundamental problems using those methods.
ACK NOWLEDGEMENTS
This research was carried out as part of the project
“Optimal Path Recommendation with Multi Criteria”
(Project code: KMP6-007899 7) under the framework
of the Action “Investment Plans of Innovation” of
the Operational Program ”Centr al Macedonia 2014-
2020” , that is co-funded by the E uropean Regional
Development Fund and Greece.
REFERENCES
Baras, J. S. and Theodorakopoulos, G. (2010). Path prob-
lems in networks. Synthesis Lectures on Communica-
tion Networks, 3:1–77.
Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tac-
chetti, A., R aposo, D., Santoro, A., Faulkner, R ., G ul-
cehre, C., Song, F., Ballard, A., Gilmer, J., Dahl, G.,
Vaswani, A., Allen, K., Nash, C., Langston, V., Dyer,
C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M.,
Vinyals, O., Li, Y., and Pascanu, R. (2018). Relational
inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.
Bellman, R. (1958). On a routing problem. Quarterly of
Applied Mathematics, 16:87–90.
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. (2013). Translating embeddings for
modeling multi-relational data. In Burges, C., Bottou,
L., Welling, M., Ghahramani, Z., and Weinberger, K.,
editors, Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc.
Dijkstra, E. W. (1959). A note on two problems in connex-
ion with graphs. Numerische mathematik, 1(1):269–
271.
Gallager, R. G. (1982). Distributed minimum hop algo-
rithms. Technical Report LIDS-P 1175, Laboratory
for Information and Decision Systems, Massachusetts
Institute of Technology.
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. (2017). N eural message passing for quan-
tum chemistry. arXiv preprint arXiv:1704.01212.
Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A for-
mal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107.
Hawkins, D . M. (2004). The problem of overfitting. Jour-
nal of Chemical Information and Computer Sciences,
44(1):1–12. PMID: 14741005.
Huang, S., Wang, Y., Zhao, T., and Li, G. (2021). A
learning-based method for computing shortest path
distances on road networks. In Proceedings of the
2021 IEEE 37th International Conference on Data
Engineering (ICDE), pages 360–371. IEEE.
Kazemi, S. M. and P oole, D. (2018). Simpl embedding for
link prediction in knowledge graphs. arXiv preprint
arXiv:1802.04868.
Kipf, T. N. and Welling, M. (2017). Semi-supervised clas-
sification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.
Li, J., Zhuo, L., Lian, X., Pan, S., and Xu, L. (2022). DPB -
NBFnet: Using neural Bellman-Ford networks to pre-
dict dna-protein binding. Frontiers in Pharmacology,
13.
Martins, E., Pascoal, M., Rasteiro, D., and Santos, J. ( 1999).
The optimal path problem. Investigacao Operacional,
19:43–60.
Prim, R. C. (1957). Shortest connection networks and some
generalizations. The Bell System Technical Journal,
36(6):1389–1401.
Sun, S ., Chen, W., Wang, L., Liu, X., and Liu, T.-Y. (2015).
On the depth of deep neural networks: A theoretical
view. arXiv preprint arXiv:1506.05232.
Veliˇckovi´c, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. (2020). Neural execution of graph algo-
rithms. arXiv preprint arXiv:1910.10593.
Wu, N., Zhao, X. W., Wang, J., and Pan, D. (2020). Learn-
ing effective road network representation with hier-
archical graph neural networks. In Proceedings of
the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 6–14.
Yang, B., Wen-tau Yih, He, X., Gao, J. , and Deng, L.
(2015). Embedding entities and relations for learn-
ing and inference in knowledge bases. arXiv preprint
arXiv:1412.6575.
Zhu, Z., Zhang, Z., Xhonneux, L .-P., and Tang, J. (2021).
Neural Bellman-Ford networks: A general graph neu-
ral network framework for link prediction. In Ad-
vances in Neural Information Processing Systems,
volume 34. MIT-Press.