
Kaul, R., Ossai, C., Forkan, A. R. M., Jayaraman, P. P., Zel-
cer, J., Vaughan, S., and Wickramasinghe, N. (2023).
The role of ai for developing digital twins in health-
care: The case of cancer care. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery,
13(1):e1480.
Mo, F., Rehman, H. U., Monetti, F. M., Chaplin, J. C.,
Sanderson, D., Popov, A., Maffei, A., and Ratchev,
S. (2023). A framework for manufacturing system re-
configuration and optimisation utilising digital twins
and modular artificial intelligence. Robotics and
Computer-Integrated Manufacturing, 82:102524.
Moor, M., Banerjee, O., Abad, Z. S. H., Krumholz, H. M.,
Leskovec, J., Topol, E. J., and Rajpurkar, P. (2023).
Foundation models for generalist medical artificial in-
telligence. Nature, 616(7956):259–265.
NASA and IBM (2023). Harmonized landsat and sentinel-2
geospatial foundation model. https://www.earthdata.
nasa.gov/news/impact-ibm-hls-foundation-model.
Accessed: 20-10-2023.
Nativi, S., Mazzetti, P., and Craglia, M. (2021). Dig-
ital ecosystems for developing digital twins of the
earth: The destination earth case. Remote Sensing,
13(11):2119.
Open X-Embodiment Collaboration (2023). Open X-
Embodiment: Robotic learning datasets and RT-X
models. https://arxiv.org/abs/2310.08864.
Pileggi, P., Lazovik, E., Snijders, R., Axelsson, L.-U.,
Drost, S., Martinelli, G., de Grauw, M., and Graff, J.
(2021). A lesson on operationalizing machine learning
for predictive maintenance of gas turbines. In Turbo
Expo: Power for Land, Sea, and Air, volume 84966,
page V004T05A006. American Society of Mechani-
cal Engineers.
Pylianidis, C., Snow, V., Overweg, H., Osinga, S., Kean,
J., and Athanasiadis, I. N. (2022). Simulation-assisted
machine learning for operational digital twins. Envi-
ronmental Modelling & Software, 148:105274.
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., et al. (2021). Learning transferable visual models
from natural language supervision. In International
conference on machine learning, pages 8748–8763.
PMLR.
Rathore, M. M., Shah, S. A., Shukla, D., Bentafat, E., and
Bakiras, S. (2021). The role of ai, machine learning,
and big data in digital twinning: A systematic litera-
ture review, challenges, and opportunities. IEEE Ac-
cess, 9:32030–32052.
Semeraro, C., Lezoche, M., Panetto, H., and Dassisti, M.
(2021). Digital twin paradigm: A systematic literature
review. Computers in Industry, 130:103469.
Seuwou, P., Banissi, E., and Ubakanma, G. (2020). The fu-
ture of mobility with connected and autonomous ve-
hicles in smart cities. Digital twin technologies and
smart cities, pages 37–52.
Takeda, S., Kishimoto, A., Hamada, L., Nakano, D., and
Smith, J. R. (2023). Foundation model for material
science. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 37(13):15376–15383.
Trantas, A., Plug, R., Pileggi, P., and Lazovik, E. (2023).
Digital twin challenges in biodiversity modelling.
Ecological Informatics, 78:102357.
van Dinter, R., Tekinerdogan, B., and Catal, C. (2022). Pre-
dictive maintenance using digital twins: A systematic
literature review. Information and Software Technol-
ogy, 151:107008.
Vysko
ˇ
cil, J., Douda, P., Nov
´
ak, P., and Wally, B. (2023).
A digital twin-based distributed manufacturing execu-
tion system for industry 4.0 with ai-powered on-the-
fly replanning capabilities. Sustainability, 15(7).
Yang, S., Nachum, O., Du, Y., Wei, J., Abbeel, P., and Schu-
urmans, D. (2023). Foundation models for decision
making: Problems, methods, and opportunities. arXiv
preprint arXiv:2303.04129.
Yuan, Y. (2023). On the power of foundation models. In In-
ternational Conference on Machine Learning, pages
40519–40530. PMLR.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
994