REFERENCES
Aghaei-Lasboo, A., Inoyama, K., Fogarty, A. S., Kuo, J.,
Meador, K. J., Walter, J. J., Le, S. T., Graber, K. D.,
Razavi, B., & Fisher, R. S. (2020). Tripolar concentric
EEG electrodes reduce noise. Clinical
Neurophysiology, 131(1), 193–198. https://doi.org/
10.1016/j.clinph.2019.10.022
Besio, W., & Chen, T. (2007). Tripolar Laplacian
electrocardiogram and moment of activation isochronal
mapping. Physiol Meas., 28(5), 515–529.
https://doi.org/10.1088/0967-3334/28/5/006
Bradshaw, L. A., Richards, W. O., & Wikswo, J. P. (2001).
Volume conductor effects on the spatial
resolution of magnetic fields and electric
potentials from gastrointestinal electrical activity.
Med.Biol.Eng.Comput., 39(1), 35–43.
Estrada-Petrocelli, L., Torres, A., Sarlabous, L., Rafols-De-
Urquia, M., Ye-Lin, Y., Prats-Boluda, G., Jane, R., &
Garcia-Casado, J. (2021). Evaluation of Respiratory
Muscle Activity by Means of Concentric Ring
Electrodes. IEEE Transactions on Biomedical
Engineering, 68(3), 1005–1014. https://doi.org/10.11
09/TBME.2020.3012385
Hjorth, B. (1975). An on-line transformation of EEG scalp
potentials into orthogonal source derivations.
Electroencephalogr.Clin.Neurophysiol., 39(5), 526–
530.
Liu, X., Makeyev, O., & Besio, W. (2020). Improved
Spatial Resolution of Electroencephalogram Using
Tripolar Concentric Ring Electrode Sensors. Journal of
Sensors, 2020. https://doi.org/10.1155/2020/6269394
Lu, C. C., & Tarjan, P. P. (2002). Pasteless, Active,
Concentric Ring Sensors for Directly Obtained
Laplacian Cardiac Electrograms. J.Med.Biol.Eng., 22,
199–203.
Macias, C., Khakpour, H., Buch, E., Shivkumar, K., &
Bradfield, J. S. (2019). Limitations of 12-lead
electrocardiogram wide complex tachycardia
algorithms in a patient with left atrial flutter and large
myocardial infarction. HeartRhythm Case Reports,
5(2). https://doi.org/10.1016/j.hrcr.2018.04.001
Makeyev, O., Ye-Lin, Y., Prats-Boluda, G., & Garcia-
Casado, J. (2021). Comprehensive optimization of the
tripolar concentric ring electrode based on its finite
dimensions model and confirmed by finite element
method modeling. Sensors, 21(17). https://doi.org/
10.3390/s21175881
Mas-Cabo, J., Ye-Lin, Y., Benalcazar-Parra, C., Alberola-
Rubio, J., Perales, A., Garcia-Casado, J., & Prats-
Boluda, G. (2017). Electrohysterogram Signals from
Patients with Threatened Preterm Labor: Concentric
Ring Elecctrode vs. Disk Electrode Recordings.
BIOSIGNALS 2017 - 10th International Conference on
Bio-Inspired Systems and Signal Processing,
Proceedings; Part of 10th International Joint
Conference on Biomedical Engineering Systems and
Technologies, BIOSTEC 2017, 5, 78–83.
https://doi.org/10.5220/0006155000780083
Prats-Boluda, G., Garcia-Casado, J., Martinez-de-Juan, J.
L. L., & Ponce, J. L. L. (2007). Identification of the
slow wave component of the electroenterogram from
laplacian abdomianl surface recording in Humans.
Physiological Measurement, 28(9), 1115–1133.
https://doi.org/10.1088/0967-3334/28/9/012
Prats-Boluda, G., Garcia-Casado, J., Martinez-de-Juan, J.
L., & Ye-Lin, Y. (2011). Active concentric ring
electrode for non-invasive detection of intestinal
myoelectric signals. Medical Engineering and Physics,
33(4), 446–455. https://doi.org/10.1016/j.medengphy.
2010.11.009
Prats-Boluda, G., Ye-Lin, Y., Bueno-Barrachina, J. M.,
Rodriguez De Sanabria, R., & Garcia-Casado, J.
(2016). Towards the clinical use of concentric
electrodes in ECG recordings: Influence of ring
dimensions and electrode position. Measurement
Science and Technology, 27(2). https://doi.org/
10.1088/0957-0233/27/2/025705
Prats-Boluda, G., Ye-Lin, Y., Pradas-Novella, F., Garcia-
Breijo, E., & Garcia-Casado, J. (2018). Textile
Concentric Ring Electrodes: Influence of Position and
Electrode Size on Cardiac Activity Monitoring. Journal
of Sensors, 2018. https://doi.org/10.1155/2018/7290
867
Tandonnet, C., Burle, B., Hasbroucq, T., & Vidal, F.
(2005). Spatial enhancement of EEG traces by surface
Laplacian estimation: comparison between local and
global methods. Clin.Neurophysiol., 116(1), 18–24.
Trung, T. Q., & Lee, N.-E. (2016). Flexible and Stretchable
Physical Sensor Integrated Platforms for Wearable
Human-Activity Monitoringand Personal Healthcare.
Advanced Materials, 28(22), 4338–4372.
https://doi.org/10.1002/adma.201504244
Wang, Z., Zhao, N., Shen, G., Jiang, C., & Liu, J. (2023).
MEMS-Based Flexible Wearable Tri-Polar Concentric
Ring Electrode Array With Self-Adhesive Graphene
Gel for EEG Monitoring. IEEE Sensors Journal, 23(3).
https://doi.org/10.1109/JSEN.2022.3230679
Wei, Y., Torah, R., Li, Y., & Tudor, J. (2016). Dispenser
printed capacitive proximity sensor on fabric for
applications in the creative industries. Sensors and
Actuators A: Physical, 247, 239–246. https://doi.org/
10.1016/J.SNA.2016.06.005
Ye-Lin, Y., Martinez-De-Juan, J. L., Jareño-Silvestre, A.,
& Prats-Boluda, G. (2022). Concentric ring electrodes
for non-invasive recording of gastric myoelectric
activity. Measurement: Journal of the International
Measurement Confederation, 188(110607), 1–9.
https://doi.org/10.1016/j.measurement.2021.110607