![](bg8.png)
in individuals with neurological disorders. IEEE jour-
nal of biomedical and health informatics, 25(4):1111–
1119.
Bevilacqua, V., D’Ambruoso, D., Mandolino, G., and
Suma, M. (2011). A new tool to support diagnosis of
neurological disorders by means of facial expressions.
In 2011 IEEE International Symposium on Medical
Measurements and Applications, pages 544–549.
Brooks, B. R., Miller, R. G., Swash, M., Munsat, T. L.,
of Neurology Research Group on Motor Neuron Dis-
eases, W. F., et al. (2000). El escorial revisited: revised
criteria for the diagnosis of amyotrophic lateral scle-
rosis. Amyotrophic lateral sclerosis and other motor
neuron disorders, 1(5):293–299.
Bulat, A. and Tzimiropoulos, G. (2017). How far are we
from solving the 2d & 3d face alignment problem?
(and a dataset of 230,000 3d facial landmarks). In
International Conference on Computer Vision.
Checkoway, H., Lundin, J. I., and Kelada, S. N. (2011).
Neurodegenerative diseases. IARC scientific publica-
tions, (163):407–419.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20:273–297.
Cox, D. R. (1958). The regression analysis of binary se-
quences. Journal of the Royal Statistical Society: Se-
ries B (Methodological), 20(2):215–232.
Delaunay, B. et al. (1934). Sur la sphere vide. Izv. Akad.
Nauk SSSR, Otdelenie Matematicheskii i Estestven-
nyka Nauk, 7(793-800):1–2.
Gomes, N. B., Yoshida, A., de Oliveira, G. C., Roder, M.,
and Papa, J. P. (2023). Facial point graphs for stroke
identification. In Iberoamerican Congress on Pattern
Recognition, pages 685–699. Springer.
Goodfellow, I. J., Erhan, D., Carrier, P. L., Courville, A.,
Mirza, M., Hamner, B., Cukierski, W., Tang, Y.,
Thaler, D., Lee, D.-H., et al. (2013). Challenges in
representation learning: A report on three machine
learning contests. In Neural Information Processing:
20th International Conference, ICONIP 2013, Daegu,
Korea, November 3-7, 2013. Proceedings, Part III 20,
pages 117–124. Springer.
Gross, R., Matthews, I., Cohn, J., Kanade, T., and Baker,
S. (2010). Multi-pie. Image and vision computing,
28(5):807–813.
Jin, B., Qu, Y., Zhang, L., and Gao, Z. (2020). Diagnosing
parkinson disease through facial expression recogni-
tion: video analysis. Journal of medical Internet re-
search, 22(7):e18697.
King, D. E. (2009). Dlib-ml: A machine learning toolkit.
The Journal of Machine Learning Research, 10:1755–
1758.
Kipf, T. N. and Welling, M. (2016). Semi-supervised clas-
sification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.
Langmore, S. E. and Lehman, M. E. (1994). Physiologic
deficits in the orofacial system underlying dysarthria
in amyotrophic lateral sclerosis. Journal of Speech,
Language, and Hearing Research, 37(1):28–37.
Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar,
Z., and Matthews, I. (2010). The extended cohn-
kanade dataset (ck+): A complete dataset for action
unit and emotion-specified expression. In 2010 ieee
computer society conference on computer vision and
pattern recognition-workshops, pages 94–101. IEEE.
Lyons, M., Akamatsu, S., Kamachi, M., and Gyoba,
J. (1998). Coding facial expressions with gabor
wavelets. In Proceedings Third IEEE international
conference on automatic face and gesture recognition,
pages 200–205. IEEE.
Mehrabian, A. (1968). Some referents and measures of non-
verbal behavior. Behavior Research Methods & In-
strumentation, 1(6):203–207.
Oliveira, G. C., Ngo, Q. C., Passos, L. A., Papa, J. P.,
Jodas, D. S., and Kumar, D. (2023). Tabular data
augmentation for video-based detection of hypomimia
in parkinson’s disease. Computer Methods and Pro-
grams in Biomedicine, 240:107713.
Veli
ˇ
ckovi
´
c, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., and Bengio, Y. (2017). Graph attention networks.
arXiv preprint arXiv:1710.10903.
Wu, Y. and Ji, Q. (2019). Facial landmark detection: A
literature survey. International Journal of Computer
Vision, 127:115–142.
Xiong, X. and De la Torre, F. (2013). Supervised descent
method and its applications to face alignment. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 532–539.
Xu, R.-S. and Yuan, M. (2021). Considerations on the con-
cept, definition, and diagnosis of amyotrophic lateral
sclerosis. Neural Regeneration Research, 16(9):1723.
Xu, X., Ruan, Z., and Yang, L. (2020). Facial expression
recognition based on graph neural network. In 2020
IEEE 5th International Conference on Image, Vision
and Computing (ICIVC), pages 211–214. IEEE.
Yolcu, G., Oztel, I., Kazan, S., Oz, C., Palaniappan, K.,
Lever, T. E., and Bunyak, F. (2019). Facial expres-
sion recognition for monitoring neurological disorders
based on convolutional neural network. Multimedia
Tools and Applications, 78:31581–31603.
Young, P., Lai, A., Hodosh, M., and Hockenmaier, J.
(2014). From image descriptions to visual denota-
tions: New similarity metrics for semantic inference
over event descriptions. Transactions of the Associa-
tion for Computational Linguistics, 2:67–78.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
214