
cal Features. IEEE Transactions on Visualization and
Computer Graphics, 13(2):305–317.
Bach, B., Henry-Riche, N., Dwyer, T., Madhyastha, T.,
Fekete, J.-D., and Grabowski, T. (2015). Small Mul-
tiPiles: Piling Time to Explore Temporal Patterns
in Dynamic Networks. Computer Graphics Forum,
34(3):31–40.
Bach, B., Pietriga, E., and Fekete, J.-D. (2014a). GraphDi-
aries: Animated Transitions andTemporal Navigation
for Dynamic Networks. IEEE Transactions on Visu-
alization and Computer Graphics, 20(5):740–754.
Bach, B., Pietriga, E., and Fekete, J.-D. (2014b). Visualiz-
ing dynamic networks with matrix cubes. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’14, pages 877–886, New
York, NY, USA. Association for Computing Machin-
ery.
Bach, B., Pietriga, E., and Liccardi, I. (2013). Visualizing
Populated Ontologies with OntoTrix:. International
Journal on Semantic Web and Information Systems,
9(4):17–40.
Balzer, M. and Deussen, O. (2005). Exploring Relations
within Software Systems Using Treemap Enhanced
Hierarchical Graphs. In 3rd IEEE International Work-
shop on Visualizing Software for Understanding and
Analysis, pages 1–6.
Barsky, A., Munzner, T., Gardy, J., and Kincaid, R. (2008).
Cerebral: Visualizing Multiple Experimental Condi-
tions on a Graph with Biological Context. IEEE
Transactions on Visualization and Computer Graph-
ics, 14(6):1253–1260.
Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2014).
The State of the Art in Visualizing Dynamic Graphs.
In EuroVis - STARs. The Eurographics Association.
Behrisch, M., Davey, J., Fischer, F., Thonnard, O., Schreck,
T., Keim, D., and Kohlhammer, J. (2014). Visual
Analysis of Sets of Heterogeneous Matrices Using
Projection-Based Distance Functions and Semantic
Zoom. Computer Graphics Forum, 33(3):411–420.
Bigelow, A., Nobre, C., Meyer, M., and Lex, A. (2019). Ori-
graph: Interactive Network Wrangling. In 2019 IEEE
Conference on Visual Analytics Science and Technol-
ogy (VAST), pages 81–92.
Bothorel, G., Serrurier, M., and Hurter, C. (2013). Visu-
alization of Frequent Itemsets with Nested Circular
Layout and Bundling Algorithm. In Bebis, G., Boyle,
R., Parvin, B., Koracin, D., Li, B., Porikli, F., Zordan,
V., Klosowski, J., Coquillart, S., Luo, X., Chen, M.,
and Gotz, D., editors, Advances in Visual Computing,
Lecture Notes in Computer Science, pages 396–405,
Berlin, Heidelberg. Springer.
Burch, M., Schmidt, B., and Weiskopf, D. (2013). A
Matrix-Based Visualization for Exploring Dynamic
Compound Digraphs. In 2013 17th International Con-
ference on Information Visualisation, pages 66–73.
ISSN: 2375-0138.
Chaturvedi, S., Dunne, C., Ashktorab, Z., Zachariah, R.,
and Shneiderman, B. (2014). Group-in-a-Box Meta-
Layouts for Topological Clusters and Attribute-Based
Groups: Space-Efficient Visualizations of Network
Communities and Their Ties. Computer Graphics Fo-
rum, 33(8):52–68.
Chuang, J., Manning, C. D., and Heer, J. (2012). Ter-
mite: visualization techniques for assessing textual
topic models. In Proceedings of the International
Working Conference on Advanced Visual Interfaces,
AVI ’12, pages 74–77, New York, NY, USA. Associ-
ation for Computing Machinery.
Daniel, D. T., Wuchner, E., Sokolov, K., Stal, M.,
and Liggesmeyer, P. (2014). Polyptychon: A
Hierarchically-Constrained Classified Dependencies
Visualization. In 2014 Second IEEE Working Con-
ference on Software Visualization, pages 83–86.
De Domenico, M., Porter, M. A., and Arenas, A. (2015).
MuxViz: a tool for multilayer analysis and visual-
ization of networks. Journal of Complex Networks,
3(2):159–176.
Dinkla, K., El-Kebir, M., Bucur, C.-I., Siderius, M., Smit,
M. J., Westenberg, M. A., and Klau, G. W. (2014).
eXamine: Exploring annotated modules in networks.
BMC Bioinformatics, 15(1):201.
Dinkla, K., van Kreveld, M. J., Speckmann, B., and West-
enberg, M. A. (2012). Kelp Diagrams: Point Set
Membership Visualization. Computer Graphics Fo-
rum, 31(3pt1):875–884.
Dunne, C. and Shneiderman, B. (2013). Motif simplifi-
cation: improving network visualization readability
with fan, connector, and clique glyphs. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’13, pages 3247–3256, New
York, NY, USA. Association for Computing Machin-
ery.
Efrat, A., Hu, Y., Kobourov, S. G., and Pupyrev, S.
(2014). MapSets: Visualizing Embedded and Clus-
tered Graphs. In Duncan, C. and Symvonis, A., edi-
tors, Graph Drawing, Lecture Notes in Computer Sci-
ence, pages 452–463, Berlin, Heidelberg. Springer.
Erten, C., Harding, P. J., Kobourov, S. G., Wampler, K.,
and Yee, G. (2004). GraphAEL: Graph Animations
with Evolving Layouts. In Liotta, G., editor, Graph
Drawing, Lecture Notes in Computer Science, pages
98–110, Berlin, Heidelberg. Springer.
Federico, P., Aigner, W., Miksch, S., Windhager, F., and
Zenk, L. (2011). A visual analytics approach to dy-
namic social networks. In Proceedings of the 11th
International Conference on Knowledge Management
and Knowledge Technologies, i-KNOW ’11, pages 1–
8, New York, NY, USA. Association for Computing
Machinery.
Ghoniem, M., Fekete, J.-D., and Castagliola, P. (2004).
A Comparison of the Readability of Graphs Using
Node-Link and Matrix-Based Representations. In
IEEE Symposium on Information Visualization, pages
17–24. ISSN: 1522-404X.
Henry, N., Fekete, J.-D., and McGuffin, M. J. (2007).
NodeTrix: a Hybrid Visualization of Social Networks.
IEEE Transactions on Visualization and Computer
Graphics, 13(6):1302–1309.
Jusufi, I., Kerren, A., and Zimmer, B. (2013). Multivari-
ate Network Exploration with JauntyNets. In 2013
17th International Conference on Information Visual-
isation, pages 19–27. ISSN: 2375-0138.
Kim, K., Carlis, J. V., and Keefe, D. F. (2017). Comparison
techniques utilized in spatial 3D and 4D data visual-
Visualizing Group Structure in Compound Graphs: The Current State, Lessons Learned, and Outstanding Opportunities
707